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1. INTRODUCTION

Beginning around fifty years ago, a plethora of literature has been created to
understand the continuous Lie algebra cohomology X(M) of the vector fields on a
smooth manifold M. This cohomology in the literature carries the name Gelfand-
Fuks cohomology, in reference to the authors who opened the investigation of this
subject with a series of highly novel papers [, [2], [3]. Initially, it was hoped that
this cohomology might contain invariants for the smooth structure of M, hence
be a potential tool for understanding the problem of classifying and differentiating
exotic smooth structures on a given manifold, a problem which is still open as of
today, for example for the 4-sphere.
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Unfortunately, these hopes were denied by a paper by Bott and Segal, which
showed that the Gelfand-Fuks cohomology was isomorphic to the singular coho-
mology of a mapping space that can be functorially constructed from M, and from
which no new invariants arise [4]. Regardless, these explorations brought with them
a lot of applications, for example in the theory of foliations [5] or for the construc-
tion of the Virasoro algebra [6]. Further, a lot of related open problems are still
being pursued, like the continuous cohomology of the Lie algebra of symplectic,
Hamiltonian or divergence-free vector fields on symplectic/Riemannian manifolds
7 [8].

To this end, we want to lay out in this document a streamlined, detailed and
relatively elementary path to the fundamental results of Gelfand-Fuks cohomology,
guided by the general strategies in [9] and [10], filling in nontrivial details that
have been left to the reader in the original literature, and modernizing some of
the language used. We make neither a claim to originality — in fact, except for
the occasional auxiliary Lemma, all given results are recorded in the literature —
nor to be fully exhaustive — we restrict ourselves to Gelfand-Fuks cohomology with
trivial coefficients, and direct the reader to [I1] for an overview of the study of other
coefficient modules.

Our final goal is to, in full detail, formulate and prove the existence of spectral
sequences which calculate the Gelfand-Fuks cohomology of certain smooth mani-
folds, in other words, to reproduce [9, Theorem 2.4.1a, 2.4.1.b]. This document is
intended to be fully accessible for any researcher with a solid understanding of the
basics of homological algebra, sheaf theory and differential geometry.

We begin in Section [2] with an outline of the continuous cohomology of the Lie
algebra of formal vector fields, i.e. vector fields whose coefficient functions are for-
mal power series. They represent the infinitesimal counterpart of X(M) and their
cohomology can be calculated exactly, using a spectral sequence over which one can
get full control. In Section [3] we tie the cohomology of formal vector fields to the
Gelfand-Fuks cohomology of Euclidean space, which may itself be understood as the
local counterpart to Gelfand-Fuks cohomology. We do not only calculate this co-
homology, but also examine its transformation behaviour under diffeomorphisms of
FEuclidean space. This prepares a local-to-global analysis of the global Gelfand-Fuks
cohomology on an arbitrary smooth manifold. In Section [4 by patching together
the local Gelfand-Fuks cohomology using sheaf theoretic ideas, we end up being able
to give a variation of the well-known spectral sequences that calculate Gelfand-Fuks
cohomology for a class of orientable, smooth manifolds. While it is difficult to get
good control over this spectral sequence for arbitrary manifolds, we explain how
it allows a full calculation of the Gelfand-Fuks cohomology of the circle S! and
may be used to make certain general statements about finite-dimensionality of the
Gelfand-Fuks cohomology. While these results in this section are well-known, our
proof is a novel addition to the currently available ones, exploiting the existence of
so-called k-good covers, see [12], an approach inspired by the treatment of Gelfand-
Fuks cohomology in the framework of factorization algebras in the preprint [I3].
This proof allows an analogous treatment of other infinite-dimensional Lie algebras
such as gauge algebras, as we plan to show in future work [I4].
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2. THE LIE ALGEBRA OF FORMAL VECTOR FIELDS

In this section, we mainly elaborate on the methods given in [9, Chapter 2.2] and
[3]. There will be one substantial divergence in method in the proof of Theorem
which makes use of the results of [15], see Subsection

2.1. Definition and first properties. We begin with an analysis of the infinites-
imal counterpart of the vector fields on smooth manifold.

Definition 2.1 (Formal vector fields). Fix any point p € M. We define the Lie
algebra of formal vector fields W, to be equal to the Lie algebra of co-jets Jy°X(M)
at p.

Any choice of coordinates (z1,...,zy) centered at p with local frame (01, ..., 0y)
allows us to write W,, as

Wn = {Zfzaz : fl S R[[:cl,. .. ,In]]} = R[[Il, A 71‘"]] ®Rn,
i=1

with induced Lie bracket
dg of
0;,90;] = f==—-0; —g=—
[f0i, g ]] faxi j 95$J
Equipping R[x1, ..., z,] with its projective limit topology, W,, becomes a topo-

logical Lie algebra.

877 fagER[[xh?zn]]

A quick argument on why the notation W,, does not reflect on the choices made.

Lemma 2.2. Denote by X(M) the space of smooth vector fields on M.
Let U,V C M be open neighbourhoods and p € U. A diffeomorphism

¢o:U—=V
induces a Lie algebra isomorphism
JT¢ X (M) — J;‘(’p)X(M)

which only depends on the co-jet of ¢ at p.
In particular, the definition of W, is independent of the choice of basepoint p,
up to Lie algebra isomorphism.

Proof. A choice of a different point ¢ and coordinates around ¢ corresponds to a
local diffeomorphism ¢ : U, — U, of small neighbourhoods U, and U, of p and
q, respectively, only depending on the infinity-jet of ¢ at p. Since Lie brackets of
vector fields commute with pullbacks by diffeomorphisms, these pullbacks are Lie
algebra isomorphisms.

As a result, since all smooth manifolds are locally Euclidean, our definition of

W,, depends only on the dimension n, up to Lie algebra isomorphism.
O

Remark 2.3. Later on, we will compare copies of W,, at different points of a given
manifold, and hence we have to stay aware about the fact that W,, transforms as
a Lie algebra of jets. This transformation behaviour will induced geometric effects
in the continuous Lie algebra cohomology of vector fields which are not apparent
in the formal case.

We first examine the structure of W,,. The following lemma is a standard veri-
fication and will be presented without proof.
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Lemma 2.4. As a topological Lie algebra, the formal vector fields is the completion
of a graded vector space Wy, :== @, ~ _,9r with

i=1

Ok = {Zpl@i € W, : p; homogeneous polynomials of degree k + 1} .

This grading is compatible with the Lie algebra structure, meaning [g;, 8;] C gi+;
foralli,j > —1.

For all X € W, \ {0}, write deg X = k if X € g. If X € W, lies in one of the
gk, we say X is homogeneous.
In low orders, we have Lie algebra isomorphisms:

g_1 =span{0;:i=1,...,n} =R", go=span{z;0;:4,j=1,...,n} =gl,(R).
Definition 2.5. The element E := " | 2,0; € g is the Euler vector field of W,,.
Remark 2.6. The Euler vector field E allows an alternative definition of the grading
on W,:

gr={XeW,: [E,X]=k-X}.
This naturally motivates our choice of grading and why 04,...,0, € W, are

considered to be of negative degree.

Definition 2.7. Let g be a topological Lie algebra. The Chevalley-Filenberg
cochain complex of g is

C*(9) = P C*a),
k>0
where C*(g) is the space of multilinear, skew-symmetric, jointly continuous maps
.ok
c:g" > R.
It is equipped with the differential
d: C*(g) = C**(g),
ED deX X)) = > (CD) (X XL X X
1<i<j<k+1
The cohomology of this complex is denoted H*(g), called the continuous Che-
valley-FEilenberg cohomology.
Remark 2.8. Note that the degree zero differential equals the zero map.

Remark 2.9. If g is finite-dimensional, the continuity assumption is redundant.

If g = W,, with its projective topology, then ¢ € C*(W,,) just means that ¢ is
only nonzero on a finite-dimensional subspace of A*W,,, i.e. for all cochains ¢ there
isak € Z so that ¢(X,-,...,-) =0 for all X with deg X > k.

Recall the following:

Definition 2.10. Let g be a Lie algebra, Y € g and ¢ € C*(g).

i) Denote the natural Lie algebra action of an element Y on C*(g) by YV - ¢;
the formula is given for Y, X4,..., X € g by

(V- 0)(X1,. ., Xi) =Y e(Xn,.. ., [V Xi], ., Xa).

i=1
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ii) Denote by Y Jc € C*~1(g) the interior product of c with Y, which is defined
via
(Y - c)(Xla s an—l) = C(Yv Xla s an—l)'

We have the following homotopy relation between interior product and differen-
tial:

Lemma 2.11. Let g be a Lie algebra, ¢ € C*(g) and Y € g. Then we have the
following chain homotopy formula:

dY 2¢)+Y ade=Y -c.
Proof. We have

o~

AY Je) (X1, Xe) = (D)"Y So)([Xs, X, X, i g Xa)

1<J
=D ()Y X, X, X, g X
1<J
=D (—D)Me([Xi, XY, Xy, X,
1<J

Y J(de)(Xy, ..., X)) =de(Y, X1, ..., Xp)
=D (D)X, X, Y, X, G, X

1<J
+Z e[y, X)), X1, 3 Xa).
Adding the two terms gives us the desired equality. O

A nice, well-known corollary of the previous statement is:
Corollary 2.12. The action of a Lie algebra g on its cohomology H*®(g) is trivial.

Using the grading of W,, induced by the Euler vector field E, we can also define
a grading of the cochains:

Definition 2.13. Let r € Z and k > 0. We define C(r)( ) C CF(W,,) as the sub-
space of cochains ¢ with the following property: for all homogeneous X1, ..., Xy €
W,, we have
k
D deg X; #r = o(X1,...,X;) =0.
i=1
cC'(W,) ifr=0,

We further set C? y(Wh) =
" 0 else.

Proposition 2.14 ([9], Section 1.5 and 2.2). The spaces C’T)( ) fulfil the fol-
lowing properties:
i) We have

W) =@t (W,

rEZL
and for all r € Z, the spaces Cf, (W) are subcomplexes of C*(Wy).
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i) If r < —k, thenC (W) =0.
iii) The inclusion C(o)( n) C C*(W,,) induces an isomorphism

In the following we will write H(..,.)(Wn) = H‘(C’(’j) (Wo))-

Proof. i) The direct sum decomposition follows since every ¢ € C¥(W,) is only
nonzero on a finite-dimensional subspace, and its evaluation on any Xi,..., X €
W,, can be uniquely decomposed into summands of homogeneous vector fields.

For all homogeneous X,, X;, € W,,, we either have [X,, X;] = 0 or deg[X,, X] =
deg X, + deg Xb In the former case, every cochain vanishes on [X,, X3]. In the
latter case, if Z degX # 1, then for all 1 < a,b < k+ 1 we have

k+1
deg[X,, Xp] + Z deg X; = ZdegX # .
i#a,b

This implies dC{, ) (Wy) C CF,)(Wy), hence the CF,) (Wy,) are subcomplexes.

i1) Due to the pidgeonhole principle, any collection of k elements in W,, whose
degrees sum up to a value smaller —k must have an element with degree smaller
—1. Such an element is necessarily zero, which shows the statement.

i11): Let r # 0. Then, Lemma yields the following homotopy equation on
C(',.)(Wn)f

d(Eac)+ FE a(de)=r-c.
As such, the map (E _-) defines a chain homotopy between the identity and zero
for the cochain complex €%, (Wy), and hence H*(C{, (Wy)) = 0 for all r 5 0.

We conclude that all cohomology classes of C'*(W, ) admit a representative fully
contained C 0)( ), which shows the required statement. O

2.2. Stable cohomology of W,,. We first focus on certain low-dimensional coho-
mology, the so-called stable cohomology of W,,, due to Guillemin and Shnider. They
prove in [15, Corollary 1] that H*(W,,) is trivial in dimension k¥ = 1,...,n. Note
that their paper makes much more general statements, in particular about stable
cohomology of formal Lie algebras corresponding to other classical vector field Lie
algebras, e.g. formal Hamiltonian and divergence-free vector fields.

Definition 2.15. Define for all r € Z,
80('T)(Wn) = {@ -C € C(.T+1)(Wn) . CcE C(.,,,) (Wn)}
Recall that 9;-c denotes the action of 9; € g_; on the cochain ¢ (see Definition [2.10]).

Lemma 2.16. For all r € Z, the space GC(T)( Wh) is a subcomplex of C?_ \(Wy,).

(r+1)
Proof. Tt suffices to prove 9;-dc = d(0;-¢), which follows directly from Lemma
(I

We need one more preparing definition, since the component of degree zero in
C*(W,) is often troublesome.
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Definition 2.17 (Reduced Complex). If C* is a cochain complex, define the reduced
complex C*® as

c'=0, CF:=cCF VEk>1,

equipped with the inherited differential from C'*. When notationally more feasible,
we may also denote the reduced complex with an index C,,.

We denote the cohomology of the reduced complex H® := H* (C”)
Remark 2.18. For reduced Chevalley-FEilenberg cohomology we have
H*(g) = H"(g) VE>1.

The aim of this section is the construction of a Koszul complex relating the
complexes C('T)(Wn) for different values of r. To this end, let us first prove a more
technical lemma:

Lemma 2.19. Ouver the abelian Lie algebra g_i, the continuous dual W) is a

free module, i.e. it is free as a module over the enveloping algebra U(g_1) =
S*(g_1). This module structure extends to a free module structure on the reduced
chain complex C*(W,,) and is compatible with the cochain differential.

Proof. Define for j =1,...,n the continuous functionals 97 : W,, — R with
6;(81):6”7 (9;(1'“1'%81):0, 1§21,,Z}€,Z,j§n

Let us show that the collection B := {9F,...,0%} C W, defines a basis of W}
with respect to the g_;-module structure. Clearly, B is linear independent in W'.

The Lie bracket of 0; € W,, with a formal vector field X € W, equals the partial
derivative of X along x;, hence:

lifwy ...z, =Xk, ... Tk, and j =1,

s

0 else.

(82 &T . 8;)(1‘k1 ...!L‘ksal) = {

But since every element of W' is only nonzero on a finite-dimensional subspace
of Wy, this shows that B generates W' as a g_;-module. Hence B is a basis for
W and W is free over g_;. But then also the exterior product AKW* = C*(W,,)
is free for all k > 0, and also C'*(W,,) and C*(W,,).

The compatiblity of the module structure with the differential of C*(W,,) is
essentially Lemma [2.16) (]

Proposition 2.20. There exists an exact sequence of cochain complexes
0 = Cly(Wa) = CFy (W) g 6%
- é(.n)(Wn) ®r (A"g_1)"
= (Cluy (W) /9CT, 1) (W) ) ©x (A"g-1)"
— 0,

where the differentials in every term are induced by the Lie algebra differential of

C*(W,).
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Proof. Denote by ST the functor assigning to a vector space the space of symmetric
tensors in nonzero degree. Then, consider first the well-known, acyclic Koszul
complex

0—S%(g_1) = S*(g-1) R g — -+ — S*(g-1) ®r (A"g_1)*
— 5%(g-1)/S"(9-1) ®r (A"g_1)* — 0.

Here, the last nontrivial map is given by the quotient map, and all other nontrivial
maps are given by

ar 1 8% (g-1) ®r (ATg—1)" — S%(g-1) @r (A" g1)",
URV > Z(az ‘) @ (0F Av) Vue S*(g_1),v e (Ag_1)".
i=1

The action of S*(g_1) commutes with these maps, i.e. for all u,w € S®*(g_1),v €

(A®*g_1)" we have
w- o (u®v) :Z(w~5i-u)®(3f/\v) =op(w-u®v),
i=1

and straightforwardly also with the quotient map S®(g_1) — S*(g_1)/S™(g_1).
_ Free modules are flat, and as such the tensor product of this complex with
C*(W,,) over the ring S®(g_1) is still exact, thus we get an exact complex of vector
spaces

0— C*(W,)
— C*(W,) ®r ¢°,
(2.2) — ...
— C*(W,) @ (A"g_1)*
= (C*(Wa))/(C*(Wn) @se(q 1) ST (8-1)) @R (A"g-1)" = 0.

By Lemma the chain complex structure of C*(W,,) is compatible with the
action of S*(g_1), and thus is not only a complex of vector spaces but of chain
complexes.

The maps o, of the original Koszul complex induce the following maps on Com-

plex (2.2):
C*(W,) ® (A"g_1)* = C*(W,,) @ (A" g_1)*,

CRU Z(@Z e)® (97 Av) Yee C*(W,),veAg_y.
i=1

This shows, firstly, by exactness of (2.2)) at the last term:
C* (W) ®se(g_1) St (g-1) = OC*(Wy),
and~ secondly, that~ the complex (2.2)) decomposes with respect to ‘Ehe grading
of C*(Wy) = D, CF,)(Whn), every differential increasing the degree C?,)(Wyn) —
C’(‘T +1) (Wy). ]
Considering the component of the complex which starts with the term C(.o) (Wy)
yields the desired statement.

Proposition 2.21 ([15], Corollary 1). We have H*(W,,) =0if k=1,...,n.
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Proof. Consider the exact sequence from Proposition 2.20] We have established
that é('r)(Wn) is an acyclic complex whenever r # 0, and as such, all terms in the
exact sequence are acyclic except for the leftmost and rightmost nontrivial ones.
One can consider this exact sequence of cochain complexes as a double complex
and examine the arising spectral sequences. The filtration by rows gives a spectral
sequence that immediately collapses to zero due to exactness of the complex. On
the other hand, the spectral sequence arising through filtration by columns can
only converge to zero if the differentials on the n-th page induce the following
isomorphisms:

HE (Cloy (W) ) = B ((Coy (W) /0CE,_1y (W) ) @ (A"g-1)" ).

But the complex on the right-hand side is zero in all degrees < 0, hence so is its
cohomology. Hence, for all k =1,...,n we have

Hk(Wn) = H(ICO)(Wn) = H(IQO)(Wn) =0.
(I

2.3. A spectral sequence for H*(W,). One can do even better than Proposi-
tion[2.21} We will formulate a spectral sequence due to Gelfand and Fuks [3] which
calculates the cohomology of W,,, and fully specify how the differentials in this
spectral sequence map. In other words, the dimension of H*(W,,) in every degree
can be calculated for every n € N. The information from the previous section about
low degree cohomology will aid us for the analysis of this spectral sequence.

Another important tool in understanding this spectral sequence will be the Borel
transgression theorem for spectral sequences. To formulate it, let us first define
some terminology.

Definition 2.22. Let {EP?,d,},>0 be a cohomological, first-quadrant spectral
sequence. Denote by x7F! : kerd, — E:+.1 the natural quotient map from cocycles
of the r-th page differential d,. to the r + 1-th page, and

s __ .8 r+1
Kyp=Kg_10--0K, Vs >,

where the domain of x£ is defined inductively as all the ¢ € E;°; in the domain of
k371 so that k37 tc € kerd,_1.
We call an element ¢ € Eg’o transgressive if, for all r with 2 < r < p+ 1, we

have that c is in the domain of &5.

Intuitively, the transgressive elements in Ef 0 are the ones which “survive” until
the very last moment: Only the differential d;41 : E£f1 — ngf ! also called the
transgression, can map it to something nontrivial.

By abuse of notation, we often denote an element in the domain of ] by the
same symbol as its image under x; in the higher page E?'*

The following theorem was originally proven in [T6], but we cite a slightly stronger

version from [I7, Thm 2.9].

Theorem 2.23 (Borel transgression theorem). Let B* := @y, B? and P* :=
@quo F? be finite-dimensional, graded vector spaces. Assume there are elements
x; € F* of odd degree such that

A[zy,..., 2] = F*

is bijective in degrees < N and injective in degree N + 1.
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Let further {EP?,d, },>0 be a cohomological spectral sequence whose second page
has the shape

EY?T=PBP® F°,
and which converges towards a graded vector space H® with H* = 04if0 < k < N+2.

Then we can choose the generators x; to be transgressive, and if y1,...,y; € B®
denotes a collection of elements with

ddegai+1T; =y; t=1,...,1,
then the map
Rly1,...,u] — B®
is bijective for degrees < N and injective for degree N + 1.
Theorem 2.24 (9], Theorem 2.2.4). Let n > 1.

a) There is a multiplicative, cohomological spectral sequence {EP'% d,.} con-
verging to H*(W,,) with
E;)’. = A'[¢1a ¢37 ) ¢2n—l]a
By =R[Wo, Wy, U, ] /(U . Wy iy + - 4 ip > 20),
) ,0 0,
Byt = 5" B3
where ¢;, V; are multiplicative generators in degree i and j of the zeroeth
column and row, respectively.

b) The differentials of the spectral sequence for W,, are fully specified on the
generators by

di—‘—l(ybi:\yi—‘—l S {1,3,...,2%71}.
c) We have E22 =0 if p <n and (p,q) # (0,0), or if p+ q < 2n.

Proof. Define V := R"™ to simplify notation.
a) Consider the Hochschild-Serre spectral sequence of the pair go C W, in
continuous cohomology, see Appendix [C} This has the first page

EY® = H7 (go; AP(Wy/g0)")

*

H [ go; A7 | P o
J#0

D v 9N

p—1+p1+p2+--=p J#0

Note that, as Lie algebras, go C W), is isomorphic to gl,(R) = gl(V) via
n
> aimid; = (aij)1<ij<n-
ij=1
Also, in the above spectral sequence, the action of gl,(R) = go on the finite-
dimensional spaces &) 20 APi g; is an action on a tensor module, see Appendix

By Theorem [B4] we may reduce the coefficient space in the above cohomologies to
the gl,, (R)-invariants.
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)

(1 %1) 91 A (%2 x2) (1) 04

91 A 0,

FIGURE 1. The arrows on the left-hand-side indicate a nontrivial
contraction of tensor factors, whereas the right-hand-side contracts
to zero, since the x; commute with one another.

Hence,
gl(V)
EM= P H || @A
p—1+pi+p2+--=p j#0
al(V)
= H(g0) ® D Q) A"g;
p—1+pi+p2+---=p \ j#0

By counting, we find that for any set of indices p_1,p1,p2,..., the amount of
factors transforming covariantly under gl(V') (i.e. copies of V*) within @);_, A™/ g}
is equal to p = p_1 +p1+..., whereas the amount factors transforming contravari-

antly (i.e. copies of V) is equal to 2p; +3pa + .. ..

By Theorem there are only nonzero invariants in ) i£0 APig: if the p; are
chosen such that the amount of contravariant factors equals the amount of covariant
factors.

Equivalently, this is the equation

(2.3) P—1=p1+2p2 +3p3+...

Simultaneously, again from Theorem we know that gl,,(R)-invariants in a
tensor module

VE" @ (V*)®" = Hom((V*)®" ® V", R)

can be described as the linear combinations of the functionals which contract all
covariant indices with permutations of the contravariant indices.

Correspondingly, the gl(V') invariants in the subspaces &) 0 AP7g] are given by
subjecting these functionals to the required (skew-)symmetrizations.

Hence: If p_1 > p1 + p2 + ..., then, by the pidgeonhole principle, any invariant
tensor contracts at least two contravariant factors belonging to AP-1g_; with two
covariant factors, both belonging to a single copy of g; within APig; = g; A--- Ag;
for some j > 1 (compare Figure 2.3).

However, in such a contraction the contravariant factors would behave skew-
symmetrically and the covariant ones symmetrically under permutation, hence their
contraction is zero.
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Thus, we get the additional requirement
(2.4) po1<pr+p2t...

Combining and we end up with py =0 for k> 2 and p_; =p; =: 7.
This implies that p = 2r is even whenever there are nontrivial invariants, and thus
every other column in the page EV'? vanishes. Hence all differentials on the first
page are trivial, and ET'? = EP9.

Let us describe more explicitly the contractions that define the functionals in
(ATg_1 ® A"g1)® ). Our previous analysis implies that elements in this space
arise by taking, for every permutation o € X, the functional

QRVxRV eV aV) =R,
1 with
(1 ®...0 0, (Bl @B 1) @ ® (B ® B2 ® asr))

— ﬂ% (al) cee B; (057‘) . 6%(047"-&-0(1)) cee 63(047"-&-0(7“))7 Vo, € ‘/a 6117 522 € V*v
skew-symmetrizing over the first » and the last r arguments, and symmetrizing over
the exchange 3! < 82. Denote the arising functional by ¥, € (A"g_; ® A"gy)?" V).

By re-enumerating, one shows that ¥, is, up to a sign, invariant under conju-

gation o + 707! for 7 € ¥}, and, using the inherited wedge product, we have for
ceX,,TeXandr+1<n:

U, AU, =T, € (Ar+lg_1 ® ArJrlgl)Q[(V) ]

Because g_1 is n-dimensional, (A"g_; ® Argl)g[(v) is zero if r > n, so in partic-
ular products ¥, A ¥, become zero if 0 € ¥, 7 € ¥; and r + [ < n.

Since every permutation can be decomposed into cycles, we can describe the
invariants (A"g_1 ® Argl)g[(v) as the polynomial algebra in the generators Uo, €
(A"g_1 ® Argl)g[(v) for every r = 1,...,n, each ¥, corresponding to the conjuga-
tion class of the r-cycle in ¥,., with the additional relation that products ¥;, ... ¥;,
are zero if i1 + - - - + i > 2n.

Summarizing:

BT = B = H(gl, (R)) @ R[Ws, ..., Uap] /(Ui ... Wy iy + - +ig > 2n).

The cohomology of gl,,(R) is calculated in Theorem to be equal to the exterior
algebra A®[¢1, @3, ..., Pa,—1] with some multiplicative generators ¢; of degree i.

This proves part a) of the theorem.

b) Consider the above spectral sequence for the pair (Ws,, gls,, (R)). By Propo-
sition we know that H*(Ws3,) =0 for k =1,...,3n, and by part a) we know
that the zeroeth column of the spectral sequence is equal to A®[¢1, @3, ..., Pan_1]
up to degree 2n, the ¢; being the generators of H*(gls, (R)). Hence we can apply
the Borel transgression theorem [2.23| with N = 2n — 1, implying that ¢1,. .., ¢an—1
can be chosen so that

doid; = Vi1, 1€{1,3,...,2n—1}.

Now the inclusion W,, — Wj3,, induces a morphism from the spectral sequence for
(W3, gl5,,(R)) to the spectral sequence for (W, gl,,(R)). Under this morphism, the
generators ¢; € H*(gls, (R)) restrict to equivalent generators in gl,, (R) by Theorem
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FIGURE 2. The spectral sequences for W, and W5, with nonvanish-
ing differentials indicated. Every dot represents one basis element
of the term in the given position. The cohomology of Wj is only
nontrivial in degree 0 and 3, whereas the cohomology of W5 is non-
trivial in degree 0,5,7 and 8, degree 5 and 8 having multiplicity 2.

and the generators ¥; for W3, restrict to equivalent ones for W,, by the explicit
formula for them given in part a).

This proves that all generators ¢1,...,¢2,_1 in the spectral sequence for W,
map as desired. Since the differential of the Hochschild-Serre spectral sequence is
multiplicative and all pages are generated by the ¢; and the ¥, this fully specifies
the differential on every page.

¢) Any element in E5'? with (p,q) # (0,0) is a linear combation of terms of the
form

TR T A
where we have ordered the groups of indices ascendingly, i.e. 43 < -+ < 75 and
J1 < --- < Jt, and s and t are possibly zero, but not both at the same time.
Part b) shows:
o If s =0 ori; > ji, the term is mapped to by ¢;,—1¢;, .. .d)z-s\Il;’l“*l e \I';Tt”
by the differential dy(;, 1)
e If =0 orii < ji, the term maps to ¢s, ... ¢; Wiy 1V ... U by doy, .
Hence the proof is done if we can show that the product ¥;, 4+ \Il;.’l“ ... \IJ;-T is
nonzero if p < n or p+ q < 2n.
This is equivalent to showing
il +1+m1]1 ++mt_]t S 2n.
If p < n, then this is implied as follows:
i1 <j1 <miji+-+mje = p,
=i+ 1+migr 4+ +mege < 2p < 2n.
On the other hand, assume p+q < 2n. Note that s = 1 is never the case, since iy

is always odd and q is always even. Hence assume s > 1, so that i1 +1 < 43+ -+14,.
But then

i+ 1l+min+- gy <di+ ot isFmaji 4 g =g+ p < 2n.

This concludes the proof of ¢), and thus the theorem is shown. (I
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This allows one to fully calculate the dimensions of H*(W,,) in all degrees and
even offers some insight into the behaviour of representatives of the cohomology
classes.

We are going to sumarize the most important properties of H*(W,,) in the fol-
lowing corollary:

Corollary 2.25. The space H¥(W,,) is finite-dimensional for all k, and trivial
when 1 < k < 2n or k > n? + 2n. The wedge product of two cohomology classes of
positive degree is zero.

3. GELFAND-FUKS COHOMOLOGY ON R"™

In this section, we calculate the Gelfand-Fuks cohomology H®(X(M)) for Eu-
clidean space M = R™. We follow the more elaborate outline by Bott, see [I0]. The
reader who is only interested in the calculation of H®(X(R™)) itself may skip to
Remark for a presentation of the considerably shorter proof from [J, Section
2.4.B, Lemma 1].

However, Bott’s approach will allow us to easily extend our proof to the Gelfand-
Fuks cohomology of a finite disjoint union |_|f:1 R"™ and also to certain diagonal
cohomologies thereof, a concept which we introduce in Section [4]

3.1. Definitions and calculation. Consider now again a smooth manifold M
with the Lie algebra of smooth vector fields X(M). This is a locally convex Lie
algebra with respect to the standard Fréchet topology, and as such we can consider
its continuous Chevalley-Eilenberg cohomology. We begin with an analysis of the
local case M = R".

There, we can express vector fields in the canonical coordinates

XR") = {Z fi-0i:fi € CD"(R")}

i=1

We also sometimes call H®(X(R™)) the local Gelfand-Fuks cohomology. We will

relate the vector fields on R"™ to the formal vector fields W, = J3°TR" by effectively
contracting them to zero. Let us again identify some structures:

Definition 3.1. The subspace

X0 (R") == {Zfi 0 : fi € R[ml,...,:ﬂn]} C X(R™)
i=1

is called the space of polynomial vector fields. They admit a filtration Py C P, C

<o C Xpol(R™) via

P, = {X € X,q(R"): X = Z f;0; withdeg f; = k + 1 for all nonzero f;},
i=1
where deg f denotes the polynomial degree of f € Rlxy,...,x,]. We write deg X =
kif X € Py, and any X contained in Py \ Py_1 is called homogeneous of degree k.

Remark 3.2. The attentive reader will notice that this is in strong analogy to what
we did with formal vector fields, and the grading of W), := @, - _, 0.

Indeed, the sets P, are the images of the natural embeddings g — X(R") that
we get from considering finite formal vector fields in W,, as polynomial vector fields
on R™. We will make use of this point of view later.
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Definition 3.3. Let t > 0. We define:
i) The scaling of R™:
T; : R®" - R", xn—)%,
i) The scaling of vector fields as the pushforward of Ty:
1
(T : X(R") > B(EY), X 2 (XoT,),
ili) For all k > 1, the scaling of cochains as the pullback of (T%).:
Ty : CH(X(R™) = CH(x(R™)),
(17 (X1, Xa) = (T X, o (T1). X0,

This next part of our proof is an elaboration of a step in Bott’s lecture notes.
Just like in Section [2] the tilde over a complex denotes a reduced complex.

Definition 3.4. For all k € Z,q > 0, define
. ~ 1
FECU(X(R™)) := {c e CIX(R™)): }iH(l) t—th*c(Xl, ..., X,) exists VX, € %(R")} .
—

Lemma 3.5. The spaces FFC*(X(R™)) for k € Z constitute a descending filtration
of the chain complex C*(X(R")). )
For k < —n we have F*C*(X(R")) = C*(X(R")), and

FEC*(X(R™)) A F'C*(X(R™)) € F*C*(X(R™)).
Proof. Since the scaling of vector fields (7}). is a pushforward of a diffeomorphism
of R™, it holds that

(T3« X, Y] = [(T7)« X, (T3). Y] VX, Y € X(R").

Hence, the scaling of cochains commutes with the Lie algebra differential, so if the
appropriate limits exist for a cochain ¢, they also do for de. Thus the F*C*(%(R™))
are indeed subcomplexes.

The filtration is descending since if lim;_, tik f(t) exists for some function ¢ —
f(t), so does lim;_,o e f(t) = 0.

The compatibility with the wedge product follows from

Tt*(cl A\ 02) = Tt*Cl A\ Tt*CQ Vep,co € é.(%(Rn))

To prove boundedness, fix a cochain ¢ € C?(X(R")) with ¢ > 0 and any
Xi,..., X, € X(R").

Applying the Hadamard lemma to every one of the vector fields X; shows that
there are vector fields X](:) eX(R") forallk=1,...,qand i =1,...,n so that

Xi(z) = Xi(0) + Z:z:,- ~X](j)(:17), Vo € R".
i=1
Then,

1 - ;
(T1)u Xi(x) = 7 Xi(0) + S a X (tr) Vo e R™
=1
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Hence, we can rewrite

. 1 - (i) 1 - i
Tre(Xy,...,X,) =c (tXl(O) +;xi-X1 (t0), - Xq(0) +;xi~X,§ )(tz) | .

Decomposing this expression using multilinearity of ¢, we find that all the terms
whose order in ¢ is lower than —n have to vanish, since any collection of n + 1
vectors X, (0),...,X;,.,(0) is linearly dependant and c is skew-symmetric. Note

also that on any compact set in R™, the vector fields = — x; - X ,gl)(ta:) (and all
their derivatives) converge uniformly to the (derivatvies of the) vector field z —
;- X7(0) for t — 0.

Combining the two previous facts, the continuity of ¢ lets us conclude that the
limit limy o 277 ¢(X1,...,X,) exists. This proves the statement. O

The analysis at the end of the previous proof motivates a different characteriza-
tion of the filtration:

Lemma 3.6. A cochain ¢ € C9(X(R™)) is an element in F*C1(X(R™)) if and only
if for all polynomial vector fields X, ..., X, € Xpo1(R™)

q
D degXi <k = ¢(X1,...,Xx) =0.

=1

Proof. Note first that for a homogeneous polynomial vector field X € X,01(R") of
degree k, we have

(T)). X =tF- X vt >0.

Assume first that ¢ € FFCI(X(R™)). Let X1,..., X, € Xpol(R™) be any homo-
geneous polynomial vector fields with Y 7 | deg X; =: r < k. Then

1
& Te(X,. o, Xy) = tRe(Xy,. .., X,).
Since r—k < 0, this can only converge to a finite value ast — 0if ¢(X1, ..., X,) = 0.

Since all polynomial vector fields are linear combinations of homogeneous ones,
this proves the first direction.

On the other hand, assume ¢ € C?(X(R")) vanishes on all polynomial vector
fields whose degree adds to a value smaller k. Let r := max{q + k,1}. Given any
vector fields Xi,...,X, € X(R"), we may apply the Hadamard lemma to each of
them 7 times to write

n
Xp(@) =Ye(a)+ D> @iy omi 20 (@) = V() + Zi(e),

i1, tpp1=1

where Y}, is a polynomial vector field of degree < r — 1, and Z,' """ € X(R").

Using multilinearity of ¢, decompose Ty ¢(Xy,...,X,) into summands of the
shape t%Tt*c with all arguments being some Y} or some Z; for k=1,..., q.

The limits lim;_,o t7; Yy and lims 0t~ "T; Z; in X(R™) exist for all k =1,...,q.
As such, any summand in the decomposition of 7 (Tyc) (X1,...,X,) which con-
tains at least one Zj as an argument is of the following form with some s > 1 and
ila"'visajl,"'ajq—s € {]qu}
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1 *
ﬁ(Tt C) (Ziu"'7Zia‘7lev"'7qu75)

=" TR (T (T Zyy e T Zi Yt Y.

17" ER

But since s > 1 and r > q + k, we have
rs—(qg—s)—k>s>1,

hence, for all these summands, the limit ¢ — 0 exists.

The only summand left to consider is tith*c(Yl, ..., Yy). The Y}, are polynomial
vector fields, so we may use multilinearity to decompose this term so that we get
terms of ﬁTt*c whose arguments are homogeneous polynomial vector fields. In
every such summand, t%Tt*c can be replaced by t>*¢, where ¥ is the sum of the
degrees of inserted homogeneous vector fields. By assumption on ¢, every summand
where ¥ < k must vanish.

This implies that as ¢ — 0, the term tikﬂ*c(Yl,...,Yk) converges to a finite
value. This concludes the proof.

|

Definition 3.7. Given any formal vector field X € W, = Jg°X(R"), denote by
X() e 2(R™) the polynomial vector field of degree r corresponding to the jet of X
at zero.
Define for all k € Z and ¢ > 1 the maps
W FRCUXR™) = Cly (Wa),  Br: Cfy (W) — FFCI(X(R™)),
(W) (X1, Xg) = lim lim ¢ *(Tye) (X7, ..., X)),

r—o0 t—0

(ﬁkc)(Yl, N ,Yk) = C(jgoY'l, <o ,]goyk) s
for all Xy,..., X, € W, and Y3,...,Y, € X(R").
Lemma 3.8. The maps By and i are well-defined chain maps with i o B = id.

Proof. Note first that v, is well-defined: The limit ¢ — 0 exists on the domain
FkC* (X(R™)), and the sequence is is eventually constant in r, since the cochain
lim;_,o T} c vanishes on homogeneous vector fields with sufficiently high degree.
Further, if ¢ € F* C’q(ff(]R”)), then by Lemma it vanishes on polynomial vector
fields whose sum of degree is smaller than k. It also vanishes on homogeneous
arguments whose sum of degrees is larger than k in the limit ¢ — 0. Hence yxc €
Cgk) (Wn) .

Analogously, if ¢ € C’(kr) (W), then B¢ vanishes on polynomial vector fields whose
sum of degrees is smaller than k, hence Lemma [3.6| implies Bic € FF¥C(%(R™)).

Recall that P, C X,01(R™) denotes the polynomial vector fields of degree k.
The identification of a finite formal vector field X,, with its Taylor polynomial in
Xpol(R™) is a Lie algebra morphism, and so is the pushforward of a vector field by
the diffeomorphism T;. Hence ~y; is a chain map.

On the other hand, f; is a chain map since taking the infinite jet of a vector
field at zero is a Lie algebra morphism X(R™) — W,.
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Consider now for any homogeneous formal vector fields Xi,...,X,, € W,, and
c € G, (W) the expression:

(vBre) (X, ..., Xy) = lim lim¢~ k(T*ﬁkc)(X(T) ,Xér))

r—oo t—0

(" - .
= lim hmt(Z 1 deg X(7) - k(ﬁkc)(Xl(T),...,Xér)).

r—00 t—0
Ifr>7, degX ") < k, then (Bkc)(j(l(r), . ,Xér)) = 0 by the characterization of
the ﬁltratlon from Lemma and since Bic € FFCI(X(R")).
If >0 deg )N(Z.(T) > k for any r € N, then also for all ' > r and

lim t(E;'J:ldegXi) (ﬁkC)( X(T)) =0 V' >r

t—0
Finally, if Y7, deg X'Z.(T) = k for almost all € N, then
. d_,de )~(§T) —k (7 S (r
tim (90 5 2k g0y (%00 LK)
= (Bre) (X7, XY = e( X0, Xy)
for almost all 7, and hence 7, Brc = c¢. This concludes the proof. O

Lemma 3.9. For every k € Z, we have the short exact sequence of cochain com-
plexes

0 — F*IC*(X(R™) — FFC*(R(R™)) B Cfy (W) — 0.

Proof. The inclusion FFt1C*(%(R")) — F*C*(%(R")) is a chain map because
{F*C*(%(R™))}rez makes up a filtration of chain complexes. On the other hand,
vk is a chain map due to Lemma Hence, the sequence is a sequence of chain
complexes.

The injectivity of the first map is clear, and the second map is surjective, since
it is split by B;. Exactness at the middle term follows from the characterization of
the filtration in Lemma[3.6] This concludes the proof. O

Lemma 3.10. Define for allt > 0 the map H; : C*(X(R™)) — C*(X(R")) via
H, =t T} o(F "),
where E € X(R") is the Euler vector field, with E(xz) =Y .| ;0;.

Then, we have for the scalings of vector fields and cochains, respectively:

d d
(L) =t ()0 Ly, T} = Hyd+dH,

denoting by Lg the usual Lie derivative with respect to E.

Proof. Note first that for all vector fields X = E?Zl fi0; € X(R™) and for all vectors
p=(p1,-..,pn) € R™ we have

(5T0-%) 0= -5 X + Y Z0s)0,

ij=1
But for the Euler vector field E € X(R") it holds that

(LeX)(p) = [E, X](p) Z p;(0;f:)(p):).

1,7=1
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Thus, for the contraction of vector fields we get the first desired formula

d
Tt =Lpo (tHT).) = (1 (Th)e) © L.
The function t — (Tyc)(X1,..., X)) is smooth in ¢ for all X; € T'(TR"), so
d b d
(o)X, .., Xy) = ;c ((Tt)*Xl, o 2 (T)e X (Tt)*Xk> .

The Lie derivative Ly on forms w € QF(M) fulfils the well-known magic Cartan
formula

Lyw =Y Jdarw + ddR(Y _ UJ).
If we replace forms w with cochains ¢ € C*(%(R™)) and the Lie derivative of forms
for Y € X(R™) with

Ly : CHX(R™)) — CFX(R™),

k
(EyC)(Xl, ey Xk) = ZC(Xl, ce ,EyXi, ey Xk),
i=1
then the analogous magic formula holds for this Lie derivative, with the de Rham
differential replaced by the Lie algebra differential.
Thus, the second formula follows:

%Tt*c = (t Y TV)s) o Lpe= (t7H(T})s) o (E sde+d(E 1)) = Hide + dHye.

O
Corollary 3.11. The complex F'C*(X(R")) is acyclic.

Proof. Note that if ¢ € F1C*(%(R™)), then lim; (T c)(X1,. .., X,) = 0 for all
Xi,..., X, € X(R™). But then

C(Xl, .. ,Xk) = (Tl*C)(Xl, .. ,Xk) — tli_I}I(l)(Tt*C)(Xl, . ,Xk)

1

d *

- [ ot xod
0

Lrd
:/0 (dtT;c) (X1,..., Xp)dt

1
= / (thc—i— dHtC) (Xl, ce ,Xk)dt = (ch+ ch)(Xl, PN 7)(k),
0

where we defined K := fol Hdt. Hence K is a chain homotopy between the identity
map and zero on F'C*(%(R")), which proves the statement. O

Finally we can state a variation of Lemma 1 in Section 2.4.B. of [9], proven with
the lengthier method from [I0].
Theorem 3.12. The inclusion
FOC*(X(R")) — C*(X(R"))
and the maps

Yo : FOCU(%(R™)) — C4

{0y (W), Bo: Clyy (W) — FOCUX(R™)
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from Definition[3.7] are quasi-isomorphisms and algebra morphisms with respect to
the wedge product of cochains.
In particular,

H*(X(R")) = H*(Wn),

and the wedge product of two cohomology classes of nonzero degree in H®(X(R™))
1s trivial.

Proof. The compatibility of the maps with the wedge product is immediate from
the multiplicativity of the filtration F*C4(X(R")) and the formulas for 7o, 3. By
Lemma for every k € Z there is an exact sequence

(3.1) 0 — FMIC*(X(R™) — FFC*(X(R™)) 2 Chy(Wn) — 0.
Insert k& = 0 here. The arising long exact sequence in cohomology and the
acyclicity of F1C®*(X(R")) by Corollary imply
. ~e n ~ IT® Pro%@ r7e
H*(FOC*(X(R™))) = Hiyy(Wn) = H*(Wh).
On the other hand, let ¥ = —1,...,—n in (3.1). By Proposition the

complexes C’;k)(Wn) are acyclic and

H*(FOC*(X(R"))) = H*(F~'C*(X(R™)))

1%

= HO(F~"C*(X(R™)
e e (O @) = B (X®™).

Combining the last two calculations concludes the proof. O

Remark 3.13. While we do require the above, elaborate groundwork on the struc-
ture of C*(X(R™)), the above result is proven in a considerably shorter way in [0
Section 2.4.B, Lemma 1]. For the sake of completion, we want to sketch the idea
and highlight what a reader of the source material needs to be mindful of:

By Taylor expansion, one can decompose X(R") = Py @ Vj, where P; are the
polynomial vector fields of degree k and Vj are those vector fields which vanish
in zero up to order k. Dually one can thus get the following decomposition (by
basically taking k — 00):

C*(X(R™)) = C*(W,,) @ B®,
where
B* :={c€ C*(X(R™)) : }%tthc =0 VkeZ}.
In [9], it is claimed that elements ¢ € B® are characterized by the property
lim; 0 T/ c = 0. All cochains in B¥ fulfil this property, but it is not an equivalence.

However, by the same homotopy formula as in Corollary [3.11] we can conclude that
B°* is an acyclic subcomplex. Hence H®*(X(R")) = H*(W,,).
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FIGURE 3. A visualization of the extension process in the proof of
Proposition [3.16] for the example n = 2. The colored dot repre-
sents the support of a cochain ¢ € H*(X(R™)) from the image of
the quasi-isomorphism map 3, and how the support is transformed
by the map ¢ from . As the support of ¢ equals a single point,
the resulting cochain ¢*c only depends on the transformation be-
haviour of ¢ around this point.

3.2. Transformation of local Gelfand-Fuks cohomology. The previous sub-
section concludes the analysis of the cohomology of X(R™). However, this local
cohomology constitues an important building block to understand the Gelfand-
Fuks cohomology for arbitrary smooth manifolds M. As such, we will explore some
properties related to extension of the cochains from a smaller to a larger open set
of M. The ideas here are also outlined in [I0].

Definition 3.14. Let M be a smooth manifold, and U C V open subsets of M.

i) Define the extension of cochains
wy : CHE(U)) — CHE(V),
(o) (Xn, .o, Xi) o= e(Xa| o0 Xi|y)
for all c € C*(X(U)), X1,..., X € X(V).

ii) The extension of cochains induces an extension of cohomology classes
W H(X(U)) — H*(X(V))
which we will denote with the same symbol Lg by an abuse of notation.

These extension maps are transitive with respect to inclusions U C V C W,
which proves the following:

Lemma 3.15. The structure maps {1y, } make the assignment U s C*(X(U)) into
a precosheaf.

While sheaf theory is well known, the dual concept of cosheaves is less commonly
considered. Hence, for self-containedness of this document, we direct the reader to
Appendix [Al or [I8] for a more detailled study of both sheaf and cosheaf theory.
We will delve deeper into the cosheaf-theoretic aspects of Gelfand-Fuks cochains in
Section @l

Proposition 3.16. Given two open balls By C By C R", the extension map
Lgf : H*(X(B;1)) — H*(X(B)) is an algebra isomorphism with respect to the
wedge product of cohomology classes.



22 LUKAS MIASKIWSKYTI

Proof. Fix diffeomorphisms B; & R"™, By 2 R". Now, consider the composition
(3.2) ¢:R" - By — By —» R".

Without loss of generality, assume that ¢ fixes zero. Recall the quasi-isomorphism
Bo : C*(Wy,) — C*(X(R™)) from Deﬁnition Every cohomology class in H*(X(B1))
has a representative of the form 8yc, and the pullback of ¢ acts on cochains Byc by

pullback of the infinity-jet of a local diffeomorphism at zero, see also Lemma .
This is clearly invertible and hence shows that the induced map

H*(X(R")) = H*(X(B1)) — H*(X(Bz)) = H*(X(R"))

is an isomorphism. But since the first and last arrow in the above composition are
both isomorphisms, so is the one in the middle.

The compatibility of the wedge product is a straightforward calculation on the
level of cochains. O

Proposition 3.17. Let M := | ||_, R™ be a disjoint collection of copies of R™.
Then every choice of order on the copies of R™ induces an algebra isomorphism

e (x (M) = (H*@X®R"))
Here, recall that the index "red” denotes the reduced cohomology.

Proof. We mimic the proof for the r = 1 situation, but we expand the scaling of
R™ to the same scaling in every copy of R™:
T K
x
. n n —
Tt.UR —>I_|]R, TS
i=1 =1
The definition of the corresponding spaces F*C9(%(M)) is identical to in the r = 1

case, and by the same proofs, they constitute a descended, filtration that is bounded
from below with
FFC*(X(M)) = C*(X(M)) Yk < —r-n.
In analogy to Deﬁnition we can define a map ’y,(;), which, together with some
choice of ordering on the components of M gives rise to an exact sequence for every
keZ:

0 — FFIC*(X(R™)) — FFC*(X(R™))

(r)
Tk ( P chyw)e e O('k,,)(Wn>> 0.
ki+-+kr-=k red

For the tensor product complex on the right hand side, we can use the Kiinneth
theorem to calculate its cohomology, and due to acyclicity of C('k) (W,,) for k # 0, the
only one of the complexes with nontrivial cohomology is the one with the condition
ki + -+ k. = 0. By the same steps as in Corollary and Theorem [3.12] we
arrive at the desired isomorphism of vector spaces.

This isomorphism respects the wedge product, as we see with the arising quasi-
isomorphism

O (Cry)®T) ),

red
a® - @cr o BV e A A BT,
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where 6(()1)’k maps formal cochains exactly like the map Sy from the Definition
but all jets of vector fields are evaluated at the zero in the k-th copy of R™. Because

the By in the r = 1 case respect the wedge product, so does Bér). ([
The formula for the quasi-isomorphism B(()T) from the previous proof implies:

Corollary 3.18. Let B;,Bs C R" be two disjoint open balls, whose union is
contained in another open ball C C R™. Then the extension map

1By, P (H*(X(B1)) @ H*(X(B2)))peq = H® (X (B1U By)) — H*(X(C))
is given by
[c1] ® [co] — [Lgicl A Lg202}.

We also want to make a quick remark on how translation on the Euclidean space
acts on cohomology:

Lemma 3.19. For all a € R™, given the diffeomorphism
To ' R" 5> R" 2z — x + a.

This induces a map (74)« on vector fields X(R™) and a map 7 cochains C*(R™)
by pullback, fulfilling the identity

5 —id = dK + Kd,
where K := =" | fol 77.(0; 2 -)dt.
Proof. For all a,z € R™ and X € X(R™), we have
(Ta)e X () — X(2) = X(x —a) — X(x)

n 1
=— Z/ (8;X)(x — ta) dt
i=170
n 1 n 1
=— Z/ 77 (05, X] dt = — Z/ 7 Lo, X dt.
i=170 i=170

Hence, by the same methods as in the proof for Corollary

n 1 n 1
Thc—Cc=— Z/ T Lo,cdt = — Z/ d(105,(0; 2 ¢)) + 745 (0; 2 de) dt.
i=1"0 i=1"0
This concludes the proof. O

3.3. A cosheaf of local Gelfand-Fuks cohomology. We conclude this section
by studying an important precosheaf on a base (see Appendix arising from the
study of local Gelfand-Fuks cohomology. The assignment U — H*(X(U)) is not a
cosheaf on M, since globally, Gelfand-Fuks cohomology is controlled by topological
effects which are not present in the local case. However, we can nonetheless extend
the assignment U — H*(X(U)) on open balls U to a unique cosheaf, which will
become useful later.

Definition 3.20. Let M be a smooth manifold. Consider the topological basis of
M given by

Brr :={U C M : U diffeomorphic to R"}.
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We define, for all ¢ > 0, a precosheaf H? on the base Brn by associating to
U C M the set H1(X(U)), and defining the extension maps as follows:

e For ¢ = 0, set for all U,V € Bg» with U C V the map v}; : H*(X(U)) —
HO(X(V)) to be equal to the identity R — R.
e For ¢ > 0, define

oy - HY(X(U)) — HI(X(V))
to be simply the extension of cohomology classes, see Definition [3.14]

Proposition 3.21. Let M be a smooth manifold, then the precosheaves H? on the
base Bg» are cosheaves on this base. As such, they extend to unique cosheaves HY
on M.

Proof. By Proposition we know that all extension maps of the precosheaf on
the base Br~ are isomorphisms. From this both cosheaf properties follow straight-
forwardly. O

Proposition 3.22. If M is orientable, then the cosheaf H*® is isomorphic to the
constant cosheaf U — H*(W,,) on M.

Proof. Choose a smooth, oriented atlas A for M. By refinement, we may assume
that all open sets in the atlas are diffeomorphic to open balls in R™ and that
they constitute a topological base B of M. Hence we can define a precosheaf on
this base via the assignment U — H®*(X(U)) and the same extension maps as
in Definition [3.20} This is a cosheaf on this base by the same argument as in
Proposition and since B C Bgn, this cosheaf on this base extends to the
cosheaf H on M defined in Definition B.20l

Let (U,¢) and (V,4) be two charts in A, and assume U C V. Recall the
quasi-isomorphisms Sy, yo from Definition [3.7] and denote by ¢*,v¢* the pullback
of cochains arising from ¢ and .

Consider the map

Ei=q0t¢ oo (¢ ) 0By : C*(W,) = C*(W,).

By unravelling the definition of =, we see that it equals the pullback of C*(W,,)
by the local diffeomorphism MU 0 ¢~" (compare Lemma 2.2)).

In Lemma we have shown that if 7, : R™ — R” is the translation map for
a € R”, then its pullback on cochains induces the identity map on cohomology.
Hence, as maps on cohomology, [¢] = [1,0¢)] for all a € R™, so we may assume that
¢|U o ¢~ fixes zero.

In this case, £ acts on H*(W,,) by an element of J§° Diff(R"), the group of
oo-jets of diffeomorphisms on R™ that fix zero.

Now, since A is oriented, the transition function ¢’ U 0¢~ ! is a positively oriented
diffeomorphism of R™. As such, the corresponding jets lie in the identity component
of the Lie groups J§ Diff(R™) for r € N. The (Fréchet) Lie algebra of J§° Diff (R™)
is equal to the projective limit

T X (M) = Py, € Wa,
k>0
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where the g are the homogeneous graded components of W, (see also [19, Chapter
IV.13]), and the action of J°TM C W, on W, is canonical action of a Lie sub-
algebra on its ambient Lie algebra. Hence the Lie algebras JJX(M) of the finite
dimensional, nilpotent Lie groups Jj Diff(R"™) are quotients of W,,.

Fix an equivalence class [c] € H*(W,,) with representative c¢. Since ¢ is only
nonzero on a finite-dimensional subspace of W,,, we have

E(c) = Er(c)

for some finite jet =, € Jj Diff(R™).

The exponential from a nilpotent Lie algebra is surjective onto the identity com-
ponent of the corresponding Lie group, hence there is some r-jet X, € JyI'M and
some X € J°TM C W, extending X, so that

2(e) = Z,(¢) = exp([X],) - ¢ = exp(X) - c.

The action of a Lie algebra on its cohomology is trivial by Corollary [2.12] and
as a consequence =([c]) = [¢]. Since [¢] € H*(W,,) was arbitrary, we have

Yoo oo (¢ 1) 0B = [E] =id ’H'(W,L)'

This implies that we can define a cosheaf isomorphism between the constant
cosheaf U — H*(W,,) and H on the base B, via
¢ opo
Hw, =
Yoo(yp=1)*
By Theorem [A-T1] this extends to an isomorphism of the constant cosheaf on M
and H, and the statement is proven. (I

Remark 3.23. In the non-orientable case, the previous result implies that the cosheaf
H is locally constant, i.e. for every point x € M there is an open neighbourhood U
of = such that H’U is a constant cosheaf on U.

4. GELFAND-FUKS COHOMOLOGY FOR SMOOTH MANIFOLDS

In this section, we construct a spectral sequence due to Gelfand and Fuks that
calculates the continuous Lie algebra cohomology for smooth manifolds, following
a local-to-global principle using sheaf theoretic ideas.

The spectral sequence itself was constructed in [I], by a complicated global
analysis of the cochain spaces C*(X(M)) in terms of explicit distributions.

The proposed local-to-global principle has originally been outlined in [10] and
[20], and, according to the last reference, was initially suggested by Segal.

In these latter two references, there are some subtleties that remained unad-
dressed: They indirectly claim that the assignment of open sets U to C*(X(U
is an cosheaf of graded vector spaces, i.e. its Cech homology (see Appendix
vanishes with respect to every good cover U of M.

This is not true, see Example We present a proof that works around this
problem by using so-called k-good covers, an adaptation to the concept of a good
cover originating from [I2]. This was inspired by the recent preprint [I3], treating
Gelfand-Fuks cohomology in the setting of factorization algebras. To the knowledge
of the author, this proof does not show up in the literature in the current form.
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v

FIGURE 4. A possible visualization of Example for M = R,
where we identify vector fields X(R) = C°°(R). An example
for a cochain ¢ which is nonzero on these vector fields would be

c(f10, f20) = f1(2) f2(=2) — f1(=2) f2(2).

However, we want to emphasize that this subtlety does not influence the validity
of the final results from Bott and Segal. The mistake is not repeated in [4] and [9],
where similar, but more sophisticated Cech-theoretic methods are used.

Regardless, our proof gives a more elementary way to calculate the Gelfand-Fuks
spectral sequence for k-diagonal cohomology, an approximation of Gelfand-Fuks
cohomology which we will introduce in the following section. The expression for
the spectral sequence has been given in [9] without an explicit proof for k # 1; the
proof in [T0] is only a sketch, with previously mentioned issues, and the proof in [1]
is substantially more involved.

4.1. Diagonal Filtration. Fix a smooth manifold M of dimension n.
The previously established precosheaf structure (see Definition [3.14)) of the co-
chains C*(X(M)) does not extend to a cosheaf structure.

Example 4.1. Let M be a smooth manifold of nonzero dimension. Then there are
smooth, nonzero vector fields X, Xo € X(M) with supp X; N supp X» = (), some
cochain ¢ € C%(X(M)) with ¢(X7, X2) # 0, and some open cover {U;,Us} of M
with

supp X1 NUz =0, suppXoNU; = 0.

If the assignment of an open set U C M to C?(X(U)) was a cosheaf, then there
would exist ¢; € C*(X(U;)) for i = 1,2 with

M M
c=ly,C1 + Ly, C2-

But then, because X5 =X, = 0, it follows that

|y, = Xaly,
0 7é C(Xl,Xg) = (LAU/[lcl + L]\U/[QCQ) (Xl,XQ) = 0
A clear contradiction, hence, the precosheaf U — C*(X(U)) is not a cosheaf.

Hence, as we increase the number of arguments in our cochains, we may get
locality or diagonality problems as in the above proof. It will be valuable to replace
these spaces by certain diagonal replacements:

Definition 4.2. Let U be an open subset of M, and ¢ > 0.
i) Define the graded vector space B*(X(U)) := @, BY/(X(U)), where

BUX((U)) :={c:X(U)? = R | ¢ multilinear and jointly continuous} .
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ii) Given a collection of vector fields {X1,...,X,} C X(U), we say that this
collection has the property Ay if for every finite set I' C U of k arbitrary
points, there is an X; that vanishes in a neighbourhood of T'.

ili) We define the k-diagonal distributions as those ¢ € B1(X(U)) with

{X1,..., X} has property Ay, = ¢(X1,...,Xq) =0.

Their collection is denoted Ay BI(X(U)).
iv) Define the k-diagonal cochains ARC1(X(U)) C CUX(M)) as the skew-
symmetric cochains which are contained in A B4(X(U)).

Proposition 4.3. For all £ > 1 and all open U C M, we have the ascending chain
0 =: AgCH(X(U)) c A C™(X(U)) C ...
C A 1CHEWU)) € ALCHE(U)) = CFE(U)).
Fur(thz}r,)gho AC*(X(U)) constitute a multiplicative filtration of the chain complex
C*(x(U)).

Proof. The chain follows directly from the definition, since if a set {X1,..., X } of
vector fields has the property Ay, it also has the property Ag_1.

Further, a set {X,..., X3} of k vector fields can only have the property Ay if
one of the X; zero everywhere. Hence A,C*(X(M)) = C*(X(M)). This shows the
first part of the proposition.

Further, notice that if {X4, ..., X441} has the property A, so does the collection
{[X1,X2], X3,...,X,}. From this it follows that

d(ARCUX(M)) C ARCITIX(M)).
Lastly, if {X1,..., X4} has the property Agyq, then {X3,..., X,} has the prop-
erty Ap or {Xg41,..., Xq4r} has the property A;. Hence
ARC*H(E(M)) ANAC*(X(M)) C AppC*(X(M)).
(I

Example 4.4. A set {X1,..., X} C X(M) has the property A; if and only if

k
ﬂ supp X; = 0.

i=1
Hence, A1C*(X(M)) consists of the cochains which vanish when the inserted vector
fields have disjoint support. These are also called the diagonal cochains.

Note that A,C?1(X(U)) = C1(X(U)), hence
ALHY(X(U))=HI(XWU)) VkE>q+1.

To put this in terms of more sheaflike data, let us view these cochains through
a different lens.

Definition 4.5. Given ¢ > 1 and the canonical projections pry,...,pr, : M7 — M,
consider the vector bundle

q
RITM = ) pr; TM — M.

i=1
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Equipping the space of sections X(M) with its standard Fréchet topology, the
Schwartz kernel theorem for smooth manifolds (see for example [21], or [22, Chap-
ter 51] for the statement for trivial vector bundles) tells us that there is a natural
vector space isomorphism

(4.1) BYX(M)) =T(RITM)*,
the star denoting the continuous dual with respect to the Fréchet topology.
This isomorphism is dual to the map
M@ X(M) >T(XITM), (Xi,...,Xy)—»XiX--- KX,

4.2
(42) (X1 RX)(21,...,2q) = X1(21) @ - @ Xy(2g) Vz1,...,24 € M.

Definition 4.6. Given k € N, let
M= {(x1,...,2q) € MT: {xiy, ..., 24, }| < K}
In other words, M} C M1 is the set of (z1,...,24) € M so that there exists no
subset {x;,,..., 2, } C {x1,..., 24} of k + 1 different points.

This means, for example
Mt :={(z,...,x) € M},
Ml ={(1,...,xy) € M? | Fi,j:i#jand x; = x;},
and clearly MY C M3 C --- C MJ = M1.

A straightforward calculation shows that the Schwartz kernel theorem gives the
diagonal filtration an interpretation in terms of the support of distributions:

Proposition 4.7. An element ¢ € BY(X(M)) is k-diagonal if and only if the
support of its image under the Schwartz kernel map in Homg(I'(XITM),R) is
contained in M.

With this perspective, we can deduce:
Lemma 4.8. For U C MY, the assignments
M > U — BYU) := Homg(T'(R/TM)| ,, R),
M > U w— Bl(U) :={c € Homg(I'(XTM),R) : suppc C U},

constitute flabby cosheaves on M9 and M}, respectively, where the extension maps
are induced by the restriction maps of the section spaces.

Proof. Consider the sheaf of distributions D? given by

M > U — DYU) := Homg (T.(RTM)|,,R),

M > U~ D{U) := {c € Homg(I'.(RTM),R) : suppc C U}
are soft. For the first sheaf, this follows since it is a module over a soft sheaf of
rings, namely the sheaf of smooth functions on M?. The second one is a restriction
of the first sheaf to a closed subspace, hence soft (see [I8, Chapter II, Thm 9.2,
Thm 9.16]).

But B? is exactly the precosheaf of compactly supported sections of the sheaf

D4, and analogously for B{ and Dj. By Proposition this implies that these
precosheaves are flabby cosheaves. [
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4.2. Generalized good covers. As we have seen, a component C*(X(M)) cannot
always be meaningfully understood to behave as (co-)sheaflike object over M, but
rather should be understood as living over the cartesian product MF¥. As such,
we will need methods to compare different Cartesian powers M, M2, M3 ... of M.
One such tool we can use is the notion of a k-good cover in the sense of [12], Def
2.9]:

Definition 4.9. Let £ > 1. An open cover U of M is k-good if:

i) Given k points x1,...,x € M, there is a U € U with z1,...,z, € U.
ii) All intersections of elements of U are diffeomorphic to a disjoint union of
at most k copies of R™.

Remark 4.10. The k-good covers are, in a sense, finite approximations to so-called
Weiss covers, which have property i) of the previous definition with no restriction
on the number k, but without any replacement for property ii), so the sets in
the cover may, a priori, be homologically wild. Weiss covers are heavily used in
the theory of factorization algebras, which appear to have very strong ties to our
setting, see [23] 13| [24].

For k = 1 this agrees with the usual notion of a good cover. Property i) of a
k-good cover U is equivalent to, for all ¢ = 1,...,k, the set of cartesian powers
{U? : U € U} being an open cover of M?, making k-good covers useful tools in
comparing data between the cartesian powers of M.

They also provide useful covers of the diagonals M}!, which we will show now.
To this end, an auxiliary lemma:

Lemma 4.11. Let ¢ > k > 1 be integers, X a topological space and U C X an
open subset with finitely many connected components.

If all connected components of U are contractible, then the connected compo-
nents of Ul are contractible, and are precisely the sets VN X} for some connected
component V' of U? with V N X[ # 0.

In particular, if U is contractible, so is U}.

Proof. Let Uy,...,Us be the finitely many connected components of U, and V be
a connected component of U?. Then it is of the shape

V=U;, x--xU,

for some i1,...,iq € {1,..., s}, not necessarily different.
By permutation and leaving out the connected components that do not con-
tribute to V', we may assume that

V=U"x--xUg
where ¢1,...,¢s > 1 and > ¢; = q.
By assumption, Uy, ..., Us are all contractible, hence, for all j = 1,...,s, there
are points y; € U; and deformation retractions F; : U; x [0,1] — U; of U; onto y;.
The product F}* x --- x Fd= of these maps, restricted to the diagonal [0,1] C
[0,1]7, gives a deformation retraction

F:Vx[0,1—V
of V to the point
(yla"'vyh'"7y’i7"'7yi~’~ay57’"7y5)GV'
—— —— N——

g1 times q; times gs times
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But if VN X} is nonempty, this map restricts to a deformation retraction of VNX{,
since, for all j =1,...,s,alll € N, all z1,...,z4, € Uj and t € [0,1]:

<l = |{Fj(xlvt)7'"’Fj(xq.sat)H < lv

Hxla-"vxq.s}

and as a consequence, if z € V N X[, then F(z,t) € V N X}, in particular because
all U; are pairwise disjoint.

Hence, if V' N X} is nonempty, this set is contractible and, in particular, con-
nected. Hence, the finitely many connected components of U}! are all equal to some
V N X! with V a connected component of X}, and they are contractible.

If U itself was even contractible, then U? has only one connected component,
hence by the preceding argument U}l is contractible. [

Lemma 4.12. Let ¢ > 2 and ¢ > k > 1 be integers and X a locally connected
topological space. Define, for every U C X,

Ul=U'NnX}!c X
IfU is a k-good open cover of X, then
Ul :={VNX!#0:V a connected component of U? for some U € U}

is an open cover of X and all nonempty, finite intersections of sets in U are
disjoint unions of contractible sets.

Proof. If x € X}, then the set of its components in the Cartesian product X7
contains at most k different points x1,...,zr € X. But since U is k-good, there is
some U € U containing all z1,...,x, and hence x € U?. Since z was arbitrary,
this shows that U} is an open cover of X}

Show now the statement about contractibility. Let VN X, V' N X} € U] be two
sets with nonempty intersection. By definition, V and V' are connected components
of some U4, U’ with U, U’ € U.

Since U is a k-good cover, Lemma [I.11]implies that all connected components of
UlN(U"){ = (UNU’){ are contractible. But, also by Lemma [4.11] the sets V N X}
and V' N X are connected components of U and (U’)}, respectively.

Since X is locally connected, so is X}, and as a consequence all connected com-
ponents of open sets in X} are closed and open. Then also (VNX7) N (V' NX])is
closed and open in U? N (U’)4, and hence must be a nonempty union of connected
components of U4 N (U’)?. Since such connected components are contractible, all
connected components of VNV N X = (VNX)n (V' NnX]) are, too.

By induction this extends to arbitrary finite intersections (V3 N---NV;) N X[,
The lemma is shown. (]

The first part of the following theorem is Proposition 2.10 in [12]:

Theorem 4.13. For every smooth manifold M, a k-good open cover exists. Fur-
ther, if M is compact, then M admits finite k-good open covers.

Proof. The existence of k-good open covers is shown in [12].

If M is compact, choose any k-good cover U, then U* is a cover of M*, and since
MP* is compact, there is a finite subcover U C U so that U* is a cover of M*. Hence
the set ¢/ fulfils property i) of being a k-good cover, and as a subset of a k-good
cover, it also fulfils property ii). |
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4.3. The Cech-Bott-Segal double complex.
Definition 4.14. For a smooth manifold M, an open cover U« of M, and k > 1.
We define the k-th Cech-Bott-Segal (CBS) double complex for the cover U as the
following diagram:
A A
D, AC3}(X(U;) =—— @H AC3XWU; NU) <=—

! }

@ AC?(X(U) <=— B ; AC*T(X(U: NUy)) <—

f

D, ACH X)) <— B, ACTEU; NU)  <—

The horizontal maps are given by the Cech differential associated to the cosheaf
structure, whereas the vertical maps are given by the direct sum of Lie algebra
differentials for the C* (X (U;; N---NU;,)).

The k-th skew-symmetrized CBS double complex is the CBS double complex
where the horizontal Cech complexes are replaced by their skew-symmetrized ver-
sions, see Remark

Our goal will be to understand the two spectral sequences that arise from taking
the horizontal and vertical filtration of this complex. We should already note here
that this is not the standard shape for a homology spectral sequence, since we are
mixing a cohomological differential and a homological differential.

A priori, this means there is an ambiguity in defining the associated total com-
plex, given by the choice of taking either direct sums or direct products on the
relevant diagonals, since there may now be infinitely many nonzero terms on each
such diagonal. The usual convergence theorems for the spectral sequences arising
from horizontal and vertical filtration will, in general, not apply.

This is a significant problem, however, for finite covers U, the skew-symmetrized
complex fixes these issues:

Lemma 4.15. Let k € N and U a finite open cover of M. The k-th skew-
symmetrized CBS double complex associated to U has only finitely many nonzero
columns. In particular, it is bounded as a double complex.

Proof. By finiteness of U, there is a largest n such that there is a nonempty inter-
section Uy N --- N U, with U; # U; for i # j. Hence all columns in degree > n
vanish in the skew-symmetrized double complex. This concludes the proof. O

We begin with horizontal cohomology.

Proposition 4.16. Let U be a k-good cover of M and ¢ > 1. If k > ¢, then we
set the notation

Ul = Uy, M= M1, Bl :=B.
Then the Cech complex
P ABUx(UY)) «+ P AxBUX(UNT)) ...
i i,j
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is isomorphic to the Cech complex associated to the flabby cosheaf
M >Uw— Bl(U) = {c € Homg(I'(K!TM),R) : suppc C M NU}

with respect to the cover U} of M}!, which was defined in Lemma

The same statement holds for the skew-symmetrized Cech complex, and the
isomorphism is equivariant under the natural permutation action of the symmetric
group Y.

Proof. Note first that U} is a cover of M} by Lemma

The (restriction of the) Schwartz kernel maps give us a family of isomor-
phisms {¢y : U C M open} as in Proposition making for all open U C V the
following diagram commute:

ARBYX(U)) —— ApBI(X(V))

Joo Jov

BU(UY) ——— BV

Hence, we have isomorphisms on the precosheaf data; this lifts to an isomorphism
of the two Cech complexes.

This argument is independent from the choice of the standard or the skew-
symmetrized Cech complex. Since the sets U J are invariant under the natural -
action on M4, both of the terms AyBY(X(U)) and B} (U}!) admit a Zi-action by
permutation of vector fields. The Schwartz kernel map is equivariant with respect
to this permutation, as one finds from the explicit formula of its dual map

O

Theorem 4.17. Consider the k-th (skew-symmetrized) CBS double complex for a
k-good cover U.

The cohomology of the g-th row is equal to AyCUX(M)) in degree zero, and
trivial in all other degrees.

Proof. Fix the ¢-th row. By Proposition the Cech complex in this row, asso-
ciated to the cover U and the presheaf U — A,BY(X(U)) over M, has the same
homology as the Cech complex of the flabby cosheaf U BL(U) over M} with re-
spect to the cover U}, Flabby cosheaves have trivial Cech homology independent of
the chosen cover by Proposition hence the homology is equal to A BY(X(M))
in zeroeth degree and zero else.

The isomorphism identifying the two complexes is equivariant with respect to
the ¥ -action on both spaces. The functor taking the complexes to its ¥,-invariants
is exact, as it arises from the action of a finite group in characteristic zero.

Hence, the skew-symmetrized complex also has trivial cohomology in nonzero
degree, and in degree zero (AyBY(X(M)))™ = ArC9(X(M)). Since the skew-
symmetrized complex is exactly the ¢-th row of the skew-symmetrized CBS com-
plex, this concludes the proof. O

Corollary 4.18. Let k£ > 1 and assume there exists a finite, k-good cover U of M.
Consider the spectral sequence { E?>?, d,.} associated to the skew-symmetrized k-th
CBS double complex for U, by filtering either along rows or columns.

This spectral sequence converges to Ay H®(X(M)).
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Proof. By Theorem filtering by rows makes the spectral sequence collapse on
the second page, with the indicated limit term Ay H®(%(M)). Due to finiteness of
U and Lemma the skew-symmetrized double complex has bounded rows, and
for such double complexes both filtrations yield spectral sequences which converge
to the same cohomology, see [25, Chapter XV].

This shows the statement. (]

4.4. Spectral sequences for diagonal cohomology. Let us now investigate the
spectral sequence arising from the k-th CBS double complex for a k-good cover, by
considering the vertical differential first, i.e. the spectral sequence arising from the
horizontal filtration. The cohomology among these vertical complexes amounts to
calculating k-diagonal Lie algebra cohomology of X(U), where the sets U are finite
disjoint unions of R™.

To this end, let us first show that, for U such a disjoint union and k sufficiently
big, there is no difference between k-diagonal cohomology of ¥(U) and standard
Lie algebra cohomology of X(U).

Proposition 4.19. Let 1 < r < k and U = |_|;."=1 R™. Then, the inclusion
ALC*(X(U)) Cc C*(X(U)) induces an isomorphism

ARH®*(X(U)) = H*(X(U)).
Proof. The construction in the proof of Proposition [3.17 restricts without change to

the diagonally filtered complex. Specifically, the filtration F4C*(X(R™)) restricts to
a filtration F4(ALC*)(X(R™)), it is straightforward to check that the exact sequence

0 = FITIC*(X(R™)) = FIC*(X(R™))

- @ C(.kl)(W") ®--Q O(.k,‘)(Wn) —0

ki+-+kr=q red

restricts to an exact sequence
0 — FTHALC®)(X(R™)) — FU(ALC®)(X(R™))

| P CuyWa)e- @l (W) | =0,

k1t tky=q red

and the image of the splitting ﬁér) : (C('O)(Wn)‘y) 7 C*(%(M)) from the proof
of Proposition is contained in A,C*(X(M)). Hence,
AGH*(R(U)) = HY(W,)®" = H*(X(U)),

and all nontrivial cohomology classes in H*(X(U)) have representatives contained
in ApH®*(%(U)), hence the inclusion of complexes induces an isomorphism. This
concludes the proof. O

Consider now the CBS double complex for some k-good cover U, and the coho-
mology with respect to the vertical differential. Every intersection in the cover U is
diffeomorphic to a disjoint union of at most k copies of R™. Hence, Proposition
applies in every column and we can replace diagonal cohomology with standard Lie
algebra cohomology. Hence, the first page of the spectral sequence assumes the
following shape:
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FIGURE 5. An illustration of Lemma [£.20t the set A has three
connected components in R, so its square A2 C R? has 9 = 32,
all arising by taking products of connected components of A. The
products of a connected component of A with itself are exactly the
connected components of A% which intersect the diagonal in R2.

@, H*(X(U;)) =—— @, H*(X(U; NU;)) =

@, H*(X(U;)) <—— @, F*TX(U: NU;)) <—

@, H' (X(U)) <—— @, H'T(X(U: NTj)) <—

We state the following simple lemma without proof (see also Figure :

Lemma 4.20. Given an subset U C M and a number q > 2, the connected compo-
nents of the set U9 intersect Mg_l if and only if U has > q connected components.
More precisely, the connected components of U? that do not intersect M;tl are
exactly the Cartesian products of q different connected components of U.

Proposition 4.21. Let ¢ > k£ > 1. Consider the k-th CBS complex with respect to
a k-good cover U, and its spectral sequence {EP'?,d,} arising from the horizontal
filtration. Recall the sets U} defined in Lemma m
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Then the complex in the g-th row E7'? is naturally isomorphic to a direct sum
of relative Cech complexes, namely
PP

CoUi ) © Co | U3 U P H" @ H®

q1+q2=4q

q1,92>0
(4.3) @
Sk
o Co\Uufuf ; P Hr e oH
1+ +qr=q
q1,--,qK >0
Here, the symmetric groups X, ..., 3 act by simultaneous skew-symmetric per-

mutation of the factors Uy x - - - x U, of any Cartesian product and the tensor factors
Oqul ®...®HQk.

The same statement holds for the skew-symmetrized CBS complex, when the
Cech complexes in are replaced by their skew-symmetrized versions.

Proof. We will first show how we embed a direct summand from E7'? into the
specified Cech complexes.
Let U =UyN---NU; with Uy,...,U; € U, and assume U has r < k connected

components Cy,...,C, C U. Then a choice of ordering on the C; gives rise to an
isomorphism
(4.4) H*(X(U))=H*(X(C))®---@ H*(X(C,)).
Fix a direct summand
(4.5) H®(X(Ch)) @ -+ ® H" (X(C,)) € HY(X(V)),
with ¢ :== >0, ¢;.
Assume that exactly m of the numbers ¢y, ..., ¢, are nonzero, w.l.o.g. q1,...,Gm.

Then we have the natural isomorphism
(4.6)  H™(X(Ch))® @ H"(X(Cp)) = H"(X(Ch)) @ - @ HT™ (X(Cpy)).

Consider now the Cech complex

C, u/;?; @ HE Q... @ HIx

q1+-+qr=q
q1,---,qK >0

In this complex, there is for every permutation ¢ € ¥, a direct summand
associated to the connected component Cy (1) X -+ X Cy(pyy of the set U™ which
equals

(4.7 HIeO (W) @ -+ @ HIm (W) C Co (U, HID @ - -+ @ HIotm).

Since C; # Cj for i # j, the sets Cy(1y X -+ X Cy(p) do not intersection
M} |, so by Lemma these direct summands do not show up in the subcom-
plex Co(UM_1,H®™). Hence, these direct summands do not vanish in the relative
complex Co(UT, UT_ |, HE™).

Since H*(W,) = H*(X(C};)) for all j, the term equals up to permu-
tation. Note further that a different choice of ordering in corresponds to a
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skew-symmetric permutation of the tensor factors. Hence we may naturally identify
(4.5) and the invariants associated to .

This construction extends to all of H*(X(U)) and hence to all of E}'Y. Since
every direct summand of the relative Cech complexes in can be completely
decomposed into terms of the form , this construction is surjective onto (4.3
and, as graded vector spaces, we can identify E7'? with the proposed direct sum of

Cech complexes |i .

Now it remains to show that this is actually an identification of chain complexes,
i.e. that the differentials of the spectral sequence are mapped to the relative Cech
differentials. Note that the differential of E}’® is itself induced by the Cech differ-
ential of the precosheaf

H*(X(U)) — H*(X(V)),

so to show that the differentials of both Cech complexes agree, it suffices to show
that the extension maps of the precosheaves H*(X(U)) — H¥(X(V)) are mapped
to the extension maps of the associated cosheaves H, H®?, ... HOF.

Consider any two open sets U C V, both equal to disjoint unions of open balls

U=CiU---UCk, V=DyU---UDy

We want to examine the extension map

(4.8) H*(X(U)) = H*(X(C1)) © - - @ H*(X(C))
— H*(X(D1))® - @ H*(X(Dy)) = H*(X(V)).

If there are two connected components of U which lie in a single connected

component of V, w.lo.g. Cy,Cy C Dy, by Corollary [3.18| the extension map
H(X(C1)) @ H=(X(Cy)) — HMT92(X(Ch))

assigns two cohomology classes on C7 and Cy to their wedge product, and by
Corollary this wedge product is zero if q1, ¢ are both nonzero.

Hence, the only nonzero extension maps on direct summands within (4.8]) are,
up to additional tensor factors of degree zero, of the form

H™X(Cp)) @@ H*(X(Cy,)) - H*(X(Dy,)) @ --- @ H*(X(Dy,)),
)@ @ fa] o ot el ® o ® e al.

with Cy, C D,,, r; #r; for i # j and q1,...,q > 0.
But this is exactly the extension map of the Cartesian product

(4.10) Cp X--xCp CDy x---x Dy,

(4.9)

within the relative Cech complex of (Ul,l/lll_l), and every extension map in this
relative Cech complex arises through an inclusion of connected components of the
form .

Additional tensor factors of degree zero in the domain or codomain of yield
equivalent maps, via the isomorphism

VeorREV
for arbitrary R-vector spaces R.
This shows that the extension maps and thus the Cech differentials are respected

by our construction. The proof is done.
O
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If M is not orientable, there does not seem to be anything further we can imme-
diately extract from these relative Cech complexes.

However, if M is orientable, then Proposition implies that all the cosheaves
H, ..., H* are constant, and hence, because Z/{,f_l ={Un M,]:_l U eur):

Ho(U; M) = Ho(My) @ HY (W),

where the Cech homology on the right hand side is the traditional Cech homology
for M with respect to the cover U, and

Ho (U U HI @ - @ HT)
=y (M, (M) ags, ) @ H? (Wo) @ - @ HO (W),

where the relative Cech homology on the right hand side is the traditional relative
Cech homology with real coefficients for the pair (M*, M} |) with respect to the
cover U, see [26, Chapter IX].

Lemma 4.22. IfU is a finite k-good cover for M, then the (relative) Cech homolo-
gies Ho(My) (and Ho(U},U' 0 M]}_,) for 2 < 1 < k) are isomorphic to (relative)
singular homology.

Proof. Tf U is finite, then all the complexes Co(U) and Co(UF,U* "M} _,) are finite
complexes of finite-dimensional vector spaces.

Dualizing is an exact functor in this setting, and the dual of these complexes are
immediately the corresponding (relative) complexes in Cech cohomology.

Now, because U is an k-good cover and by Lemma all the sets U, U3, ..., UF
are Leray covers for the constant sheaves on M, M2, ..., M*, in the sense that their
sheaf cohomology is isomorphic to the Cech cohomology with respect to this cover,
and the set UZ, ..., UF | are Leray covers for the constant sheaves on M2, ..., MF |
(see also [27, Chapter VI.D, Theorem 4]).

Hence these cohomologies agree with (relative) Cech cohomology of the space
M (or the pair (M9, M _,)), which is itself well-known to be (relative) singular
cohomology.

Since the dual of (relative) singular cohomology in this setting is (relative) sin-
gular homology, the statement is shown. O

Corollary 4.23. Let M be an orientable manifold which admits a finite, k-good
open cover (e.g. M compact).

Then there exists a cohomological spectral sequence {E?’®,d,-} which converges
to ApH®(X(M)) whose term EY? in its second page equals

(H_p(M) @ H'(Wy))

o @ (H M Mo H"(W,)®H=(W,))™
q1+92=q
q;>0

(4.11)

o @ (H (M ML) @ HY (W) @ - @ H*(W,) ™.

q1+-+qr=q
q;>0

Here, a permutation o € X,. acts by simultaneous, skew-symmetric permutation
of the Cartesian factors of M* and the tensor factors HY(W,,).
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6 R R
4

R R
2
0 R
-4 -2 0

FIGURE 6. The spectral sequence for 2-diagonal Lie algebra coho-
mology for X(S*). For the k-diagonal spectral sequences for k > 2,
this pattern continues into the upper-left direction.

Proof. Under the reflection p — —p, the spectral sequence of the skew-symmetrized
Cech complex from Proposition becomes a cohomological spectral sequence
and, by Lemma [£.22) has this second page, using any k-good cover of M.

Because of Theorem [4.13] we can choose the cover to be finite. Hence, Corol-
lary implies that the spectral sequence must converge to A H®(X(M)). This
concludes the statement. (]

Remark 4.24. These spectral sequences differ from the ones stated in [9], but
only insofar as they consider the quotient complexes A,C®(X(R™)/A_1C*(X(R™)
rather than the diagonal complexes themselves. This essentially gives one spectral

sequence for every row in (4.11)).

For k > q+1, we have Ay HY(X(M)) = H4(X(M)) so in principle, these spectral
sequences can be used to calculate the full Lie algebra cohomology of X(M), degree
by degree.

In particular, since we know that the nontrivial cohomology of W), is contained
within the degrees ¢ = 2n+1,...,2n 4+ n? and the relative cohomology of the pair
(M*, MF ) in degrees < nk, we have the following:

Corollary 4.25. For all smooth manifolds M that admits k-good open covers
for all k € N, and all n > 0, the Gelfand-Fuks cohomology H™(X(M)) is finite-
dimensional. If dim M >k > 1, then H*(X(M)) = 0.

Example 4.26. If M = S, one finds in relative singular homology:

0 else,

where the copies of R in R*~D' are enumerated by permutations of the (k — 1)-th
symmetric group, and the invariant space under the action of the k-th symmetric
group i is one-dimensional.

Using this, we find that in the spectral sequence for k-diagonal cohomology,
there is only ever at most a single nontrivial term on every diagonal p 4+ ¢ = const,
and those only exist on the diagonals p + ¢ = 0,2,3,5,6,8,9,.... From lacunary
arguments, one concludes that all differentials beyond the second page must be
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trivial. Hence, for all £ > 0, we have

R if £ # 1 mod 3,

H(x(8)) = {

0 else.
4.5. A topological model for Gelfand-Fuks cohomology. Finally, we want to
mention the historical conclusion to the investigation of Gelfand-Fuks cohomology,
namely the existence of a topological model for Gelfand-Fuks cohomology for certain
smooth manifolds M, i.e. a topological space X such that Hg,,(X) = Hep(X(M)).
This has been carried out in [4], originally, and is also presented in [9]. We have not
been able to substantially add to the presentation or proofs in the given literature,
so we will simply state the most important theorems and hint at the ideas behind
their proofs.

We begin with a topological model for the cohomology of formal vector fields
H*(W,), as studied in Section [2| Consider the complex Grassmanian G(n,2n) of
n-dimensional subspaces of C?" as a smooth manifold. Its cohomology ring up to
dimension < 2n is freely generated by generators o, Wy, ..., ¥y, one in every even
dimension.

As a CW-complex, it has a natural cell decomposition into its Schubert cells,
which are complex manifolds, and hence have even real dimension. As a conse-
quence, the cohomology of the 2n-skeleton B C G(n,2n), the space of all CW-cells
up to dimension < 2n, has the same generators, but with the relation that products
of degree > 2n vanish.

We recognize this algebra as appearing in the rows of the spectral sequence
from Theorem which calculates the cohomology of the formal vector fields
W,,. Indeed, in analogy to the theory of equivariant differential forms and principal
bundles, one may consider this as the basic part of some object, over which the
Lie group GL,(R) acts on the “fibres” — in correspondence to the cohomology of
gl,,(R) appearing in the columns of the spectral sequence. Bott and Segal make
these notions precise by defining what they call G-cochain algebras, an algebraic
generalization of G-principal fibre bundles.

Because CW-complexes and subcomplexes thereof are good pairs in the sense of
algebraic topology, B admits an open neighbourhood in G (n, 2n) with equal singular
cohomology. We denote this smooth manifold by B. Recall also the tautological
bundle V(n,2n) — G(n,2n), where the total space V(n,2n) is given by collections
of n linearly independent vectors of 2n, and its projection to G(n,2n) equals the
projection of such a collection to the subspace it spans in C2".

Finally, we are prepared to state the topological model:

Theorem 4.27. Let B, be an open neighbourhood of the 2n-skeleton of the Grass-
mannian G(n,2n) that deformation retracts onto this skeleton. Let further F, —
B, be the restriction of the tautological, principal GL,(C)-bundle V(n,2n) —
G(n,2n) to By,.

Then there is a O(n)-equivariant zig-zag of quasi-isomorphisms between C*(W,,)
and C3y (Fy). In particular:

H*(Wn) = HEp o (Fn).
Proof sketch. Both C*(W,,) and Q3 (F),) are G-cochain algebras with G = GL,(R)

and G = U(n), respectively, and they both admit standard connections, as defined
in []. These connections allow the cohomologies of the G-cochain algebras to be
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reduced to calculation of the cohomology of the respective basic subcomplexes. For
C*(W,,), this is the relative complex C* (W, gl,,(R)), for Q°*(F,,) this is the de Rham
complex of the base manifold Q3 (Br). The cohomology of these subcomplexes are
identical for both G-cochain algebras, and equal to the singular cohomology of the
space B,,.

Consider the Sullivan minimal cochain algebra M* of the complex Q3y (B) (orig-
inally due to [28], see also [29, Prop. 12.2]). This embeds into the basic subcomplex
of both cochain algebras by quasi-isomorphisms. By reducing the fiber groups of
both G-cochain algebras to their common intersection O(n) = U(n) N GL,(R),
this zig-zag of quasi-isomorphisms can be lifted to a zig-zag of O(n)-equivariant
quasi-isomorphisms C*(W,,) and Q°*(F,,). This concludes the sketch. O

Now, just as we treated W,, in our previous calculations as a local model which
globally glues to Gelfand-Fuks cohomology, it turns out that the topological model
for H*(W,,) globally glues to a topological model for H*(%X(M)). This model ap-
pears as an infinite-dimensional mapping space, and as such the local-to-global
analysis is, while spiritually similar to our proof of Corollary [£:23] quite a lot more
involved.

Bott and Segal construct, analogous to Corollary a spectral sequence that
calculates k-diagonal Gelfand-Fuks cohomology for every k£ > 1. In contrast to
us, they work with a single good cover (rather than k-good) of M, at the cost of
having to construct non-standard Cech complexes. We remark that, as in Corol-
lary the existence of a finite good cover is necessary for Bott and Segal to
resolve convergence issues of the arising spectral sequence.

By carefully analyzing how the cohomology of mapping spaces localizes, the zig-
zag of quasi-isomorphisms in Theorem [£.27] applied to the terms within the spectral
sequences lifts to the desired a zig-zag of quasi-isomorphisms between simplicial
cohomology of the topological model and Gelfand-Fuks cohomology.

Finally, one arrives at the following:

Theorem 4.28. Let M be a Riemannian manifold that admits a finite cover by
geodesically convex sets (e.qg. M compact or the interior of a compact manifold with
boundary).

If P — M is the natural principal O, -bundle over M, let E — M be the associ-
ated O(n)-bundle with fibre F,, as constructed in Theorem[{.27. Consider T'(E) as
a topological space with its standard Fréchet topology.

Then there is a zig-zag of cohomology equivalences between the Gelfand-Fuks
cochains C*(X(M)) and singular cochains C&_ (T(E)). In particular:

sing

H*(X(M)) = Hyg(T(E)).

APPENDIX A. COSHEAVES AND CECH HOMOLOGY

A.1. Basic definitions. In this appendix, we will recall some useful statements
about cosheaf theory from [18].
In this section, fix a topological space M with topology U.

Definition A.1. [I8 Chapter V.1] Let M be a topological space.

i) A precosheaf (of abelian groups) P on M is a covariant functor from the
category of open sets of M, morphisms given by inclusions, into the category
of abelian groups. Given an inclusion U C V of open sets, we denote the
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associated mapping P(U) — P(V) by 1Y}, called the extension map from U
to V of the precosheaf P.

ii) A cosheaf is a precosheaf P with the property that for every open cover U
of an open set U C M, the sequence

P rwinu;) - PPU)—PU) 0

is exact, where the maps are given by

J

(aij)iyj — Z Lg:ﬂUJ (aij — aji) N (bz)z — Z Lg1bl
; i
ili) A morphism of (pre-)cosheaves is a natural transformation between the
functors defining the (pre-)cosheaves.

We will implicitly assume that all our precosheaves take values in Ab. In [IS],
the precosheaves are assumed to take values in the category of modules over abelian
groups, but this implies our setting.

One important cosheaf is the constant cosheaf, which we cite from [I8, Section
V.1].

Example A.2. If M is locally connected and A is some abelian group, then one
defines the constant cosheaf A over M as the precosheaf which assigns to an open
U C M the abelian group V™) where 7(U) is the set of connected components
of U.

The extension maps of this constant cosheaf corresponding to an inclusion U C V
is then given by taking the sum among all elements which map from different
connected components of U into the same connected component of V.

This is, in the appropriate sense, dual to the more well-known constant sheaf
over M.

Definition A.3. Given a cosheaf, we call it flabby if all its extension maps are
injective.

Proposition A.4 ([I8], Chapter 5, Proposition 1.6). If P is a soft sheaf, then the
compactly supported sections of P have the structure of a flabby cosheaf.

A.2. Cech homology of cosheaves. We borrow some further notions from [I8]
Chapter VI, Section 4]:

Definition A.5. Let S be a precosheaf over M, and U = {U,} an open cover of
M. Write o := (o, ..., ap41) for the p-simplex defined by a collection of indices
«a;, and write

U, ;:Ualm...mU

Ap41°
Further, define for a p-simplex o and a number ¢ € {1,...,p+1} the (p—1)-simplex
a@ arising by removing the i-th index from a.

For all p > 0, we define the space of Cech p-chains for S associated to the cover
U as

Col; )= P SU).

a=(a1,...,ap41)
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We may then express elements ¢ € C,,(U; S) as finite formal linear combinations

(A1) c:an-a, Ca € S(Uay, N---NUa,p,,)s

so that iny finitely many Cq_are Nonzero.
The Cech differential 0 : Cp,(U; S) — Cp_1(U; S) via

p+1
INco ) = Z(—l)i_1 (ng(i) ca) o),
i=1

This defines a complex structure on Cy(U; P) := D,>0 Cy(U; S), and we denote
its homology in degree p by Hp(u; S), the p-th Cech homology group associated to
the cover U and the precosheaf S.

With respect to refinement, the set of open covers on M becomes a directed set,
and in this sense the set of Cech homologies with respect to open covers becomes
an inverse system, so that one can define Cech homology of M and S as

H,(M;S) := @H.(u; S).

Remark A.6. If the cosheaf S is the constant cosheaf U +— R, then this definition
equals the definition of the conventional Cech homology of a topological space.

Remark A.7. Tt is sometimes useful to instead consider the skew-symmetrized Cech
complex, i.e. the subcomplex C¢U;S) C Co(U;S) defined by the skew-symme-
trized cochains in the following sense:
The symmetric group ¥, acts on multiindices a of length p by permutation of
the entries, and we denote this permutation by o - .
Recall now the notation from (A.1). If ¢ = > co - and o = (aq,...,q;) is
one of the multiindices, we call ¢ skew-symmetric if
Co.o = sigN(0) - o Vau
Consider the embedding
Ce(U;S) — CoUU; 9).
In the dual setting of Cech cohomology of a sheaf, the corresponding dual mor-
phism is shown to be a quasi-isomorphism in [30, Section 3.8|, and this proof is

straightforwardly dualized to the cosheaf setting.
Hence, this embedding, too, is a quasi-isomorphism.

Proposition A.8 ([I8], Chapter VI, Corollary 4.5). If S is a flabby cosheaf over
M, then for every cover U of M,
. S(M) ifp=0,
;) = {7 1P
0 else.
A.3. Relative Cech homology.

Definition A.9. Let A C M be a topological subspace, and let S and T be
precosheaves on A and M, respectively.

i) We define the precosheaf S™ on M by
SM(U):=S(UNA) YUCM,

with the obvious extension maps.
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iil) A cover of the pair (M, A) is a pair (U,Uy), where U is a covering of M
and Uy C U is a covering of A.
iii) Assume there is a monomorphism of precosheaves

n:SM T
Then, this induces an injective map
Co(Uo N A, S) = Co(Up, SM) — Co(U,T).

Then, the relative complex associated to S, T, and (U,Up) is defined as the
cokernel of this map, and denote by

Co(U,Up; S, T).
Correspondingly, the homology arising rom this is called relative Cech ho-
mology associarzed to the precosheaves S and T, and the cover (U,Uy), and
is denoted by He(U,Uy; S, T).
If we choose for S and T the constant cosheaves (see Example [A.2) on X and
A andUp ={UNA:UelUUNA# ()}, then this is simply the standard relative
Cech complex Co (U, U N A) for the pair (M, A) and cover U.

A.4. Cosheaves on a base. While the concept of sheaves on a base is well-studied,
there are no remarks about cosheaves on a base in the literature. Luckily, in this
category, there is no additional work to do.

Definition A.10. Let B be a topological base of M. In the following, view B as a
subcategory of the category of open sets of M.

i) A precosheaf S on B is a covariant functor from B to the category of abelian
groups. We denote the image of U € B as S(U) and the arising extension
maps for U C V € B by ;.

ii) Choose for any U € B an open cover {U,;};c; by elements in B, and for
every i,j € I an open cover {Vj;}rex of U; N U; by elements in B. We
call a precosheaf S on B a cosheaf on B if, for all such choices, the following
sequence is exact:

0« P(U) + P PU) + @B P(Vijn)-
i ijk
ili) A morphism of (pre-)cosheaves on B is a natural transformation of the
functors defining the (pre-)cosheaves.

The sequence is the analogue of the cosheaf condition, just restricted to only
working with information on B. This is precisely the dual of the well-studied concept
of sheaves on a base, by viewing Ab-valued cosheaves as Ab°P-valued sheaves.

Theorem A.11. Given a topological space M and a topological base B of M. An
Ab-valued cosheaf on B extends, up to cosheaf isomorphism, uniquely to a cosheaf
on M.

A morphism between two cosheaves on a base B of M extends uniquely to a
morphism between the induced cosheaves on M.

Proof. The following proof is due to [31]. The analogue statement for C-valued
sheaves is true whenever C is a complete category (see [32] for a proof in the category
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of modules over a ring). However, since Ab is a cocomplete category, Ab°P is a
complete category. This proves the statementﬂ ([

APPENDIX B. REPRESENTATION THEORY AND COHOMOLOGY OF gl,,

We need a couple results about the representation theory of gl,,(R). All things
we need are also presented in [9], but for the results where this is possible, we cite
independent results and literature.

Definition B.1. Let V = R" be a finite-dimensional vector space. The Lie algebra
gl,,(R) acts on V' by matrix multiplication, and on V* by the appropriate pullback
multiplied with a minus sign.

A tensor module is a gl,,(R)-submodule of some tensor product V& @ (V*)®s,
r,s € N.

Theorem B.2 ([19], Theorem 24.4). For every o € %, let ¥, € V& @ (V*)&r
given by

Uo(1 @ Qv @01 @ @) = a1(Vp(1)) -+ (Vo (ry) Yoz € Vv, € V.
They generate the gl,,(R)-invariant subspace of VO™ @ (V*)®". For r < n, the set

of {¥,} are linearly independent.
Further, if r # s, then (V& @ (V*)®s)9[n(R) —o.

Remark B.3. While the generation of the invariants in V" @ (V*)®" requires
a careful analysis which we will not give here, we do want to mention that the
nonexistence of invariants in V®" @ (V*)®* for r # s is easy: The identity matrix
in gl, acts on V®" @ (V*)®5 by multiplication with the scalar r — s.

Theorem B.4 ([33], Theorem 10). If g is a finite-dimensional, reductive Lie
algebra, and V is a finite-dimensional, semisimple g-module. Then H®(g,V) =
H*(g,V?9).

Lastly, we want to note:

Theorem B.5 ([9], Theorem 2.1.1). The cohomology ring H*(gl,,(R)) is isomor-
phic to the exterior algebra

A.[(bla .. '7¢2n—1]a

where the ¢; are generators in degree i.
The inclusion gl(n — 1,R) — gl(n,R) induces a morphism

Hi(gl(n,R)) = H(gl(n — 1,R))
which is an isomorphism for ¢ < 2n — 3.

Remark B.6. Note that our reference states the above theorem in an erroneous
way: They state the map induced by the inclusion has a one-dimensional kernel
for ¢ = n, which, for example, cannot be true when n = 2, since the second
cohomology vanishes for all gl(n, R). They also write that the inclusion only induces
an isomorphism in degree < n, but their spectral sequence argument actually shows
the above, stronger property (see also [34, Cor 4D.3].

3e want to thank Jason Schuchardt for this simple proof idea, communicated over
math.stackexchange.
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APPENDIX C. THE HOCHSCHILD-SERRE SPETRAL SEQUENCE FOR LOCALLY
CONVEX LIE ALGEBRAS

In the finite-dimensional setting, the Hochschild-Serre spectral sequence is stan-
dard and a proof is laid out in [9 Chapter 1.5.1] and [33]. For general locally
convex Lie algebras and continuous cohomology, one generally needs a number of
topological assumptions. For example, restriction maps of continuous cochains like
Ci(g) — C"(h,A9""(g/h)*) are not necessarily surjective if the subspace b is not
complemented. We formulate some assumptions which suffice for the setting in this

paper:

Theorem C.1. Let g be a complete, barrelled, locally convex, nuclear Lie algebra
whose strong dual space g* is complete, h C g a finite-dimensional subalgebra, and
A a complete, locally convex space on which g acts continuously.

There is a cohomological spectral sequence {EP?, d.} converging to continuous
cohomology H®(g) with

EPT = H?(h,C" (g/b,A4)),
where CP(X,Y) denotes skew-symmetric, jointly continuous, multilinear maps

Xx---xX Y,
[ ——

p times

and cohomology is taken with respect to continuous cochains.
This spectral sequence is contravariantly functorial, in the sense that a diagram
of continuous Lie algebra morphisms

|

h——g
L
h——9

induces linear maps
EP(g,b) — EP(g,h)
compatible with the differentials for all p,q,7 > 0.
Proof. We define on the continuous cochains C*(g) the filtration
FPCPT(g; A) := {c € CPT9(g, A) : ¢(X1,..., Xpiq) =0 when Xq,..., X 41 € b}
This is an ascending filtration with
C"(g,A) = F°C"(g,A) D --- D F"C"(g,A) D F"'C"(g, A) = 0,
and
dFPCPT(g: A) C FPCPTITl(g; A).

Denote by A the functor assigning to a locally convex vector space X the closure

of the skew-symmetric tensors in its iterated projective tensor product X ®q, see for
example [35, Chapter II1.7, IV.9].
We have a well-defined map

FPCPta(g, A) — L(A% @ APg/h, A), cr ¢,
(N ANhg)®@[gi] A Nlgp))) ==c(ha,. .. hg, g1, .., Gp).
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This map is independent of the choices of representatives g; by definition of
the filtration and it is surjective because finite-dimensional subspaces are always
complemented, so g = h @ g/h as a direct sum of locally convex vector spaces. The
kernel equals FPT1CP+4(g, A). The image of this map is also indeed contained in
the continuous linear maps by continuity of elements in the domain.

Since b is finite-dimensional, we trivially have

(h@g/b)* =b" @ (g/h)".

By the assumptions on g and A, we may apply [22, Proposition 50.5] twice to
find

L(A"h @ APg/p, A) = L(A%, L(APg/h, A)) = C%(h, L(APg/p, A)).
Hence we get an isomorphism of vector spaces
FpCp+q(g,A)/Fp+1C’p+q(g7A) o~ (4 (byL(APE/U,AD .

The differential of C*(g, A) descends to the differential of this complex like in the
purely algebraic case, so the spectral sequence associated to this filtration indeed
has first page:

B — v (n,L(Arg/h, 4)).

The functoriality with respect to Lie algebra pairs (g,h) is analogous to the
purely algebraic setting. O

Remark C.2. This spectral sequence in the algebraic setting is generally also phrased
with information about the second page if § is an ideal. Adapting this to the con-
tinuous setting would require stronger assumptions, since this in particular requires
commuting the projective tensor product with the cohomology.
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